login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A253853
a(n) = 1 + a(n-2)*a(n-3), with a(0) = a(1) = a(2) = 1.
3
1, 1, 1, 2, 2, 3, 5, 7, 16, 36, 113, 577, 4069, 65202, 2347814, 265306939, 153082168429, 622891345681347, 40613761521380428832, 95353557892558423217593864, 25297960567233966143149250083396705, 3872666660463510383775257066365338059531886849
OFFSET
0,4
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 0..31
FORMULA
a(n+5) == a(n) (mod 2) for all n>=0.
a(n+7) == a(n) (mod 7) for all n>=7.
a(n) ~ c^(d^n), where c = 1.33114442478885300080049... and d = ((27 - 3*sqrt(69)) / 2)^(1/3) / 3 + ((9 + sqrt(69))/2)^(1/3) / 3^(2/3) = 1.324717957244746... is the root of the equation d^3 = d + 1. - Vaclav Kotesovec, Jan 17 2015
MATHEMATICA
RecurrenceTable[{a[n]==1+a[n-2]*a[n-3], a[0]==1, a[1]==1, a[2]==1}, a, {n, 0, 20}] (* Vaclav Kotesovec, Jan 17 2015 *)
PROG
(PARI) {a(n) = if( n<3, n>=0, 1 + a(n-2)*a(n-3))};
(Haskell)
a253853 n = a253853_list !! n
a253853_list = 1 : 1 : 1 : map (+ 1)
(zipWith (*) a253853_list $ tail a253853_list)
-- Reinhard Zumkeller, Jan 17 2015
(Magma) I:=[1, 1, 1]; [n le 3 select I[n] else 1 + Self(n-2)*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jan 22 2015
CROSSREFS
Cf. A007660.
Sequence in context: A179316 A103597 A337745 * A127678 A199962 A114990
KEYWORD
nonn
AUTHOR
Michael Somos, Jan 17 2015
STATUS
approved