login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A337745 G.f.: Sum_{n>=0} (1 + x^n*(1+x)^n)^n * x^n. 1
1, 1, 2, 2, 3, 5, 7, 14, 20, 27, 49, 87, 128, 189, 345, 608, 896, 1306, 2216, 3921, 6460, 10068, 15605, 25039, 42584, 73806, 120926, 184288, 281330, 466014, 813404, 1379796, 2212078, 3452038, 5473361, 8953935, 14907941, 24847539, 41157960, 67427023, 108547467, 171888302 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Limit a(n)/a(n+1) = (sqrt(5) - 1)/2 = 0.6180339887... = A094214.

LINKS

Vaclav Kotesovec, Table of n, a(n) for n = 0..2000

FORMULA

G.f.: Sum_{n>=0} (1 + x^n*(1+x)^n)^n * x^n.

G.f.: Sum_{n>=0} (1+x)^(n^2) * x^(n*(n+1)) / (1 - x^(n+1)*(1+x)^n)^(n+1).

EXAMPLE

G.f.: A(x) = 1 + x + 2*x^2 + 2*x^3 + 3*x^4 + 5*x^5 + 7*x^6 + 14*x^7 + 20*x^8 + 27*x^9 + 49*x^10 + 87*x^11 + 128*x^12 + 189*x^13 + 345*x^14 + 608*x^15 + ...

where

A(x) = 1 + (1 + x*(1+x))*x + (1 + x^2*(1+x)^2)^2*x^2 + (1 + x^3*(1+x)^3)^3*x^3 + (1 + x^4*(1+x)^4)^4*x^4 + ... + (1 + x^n*(1+x)^n)^n*x^n + ...

also

A(x) = 1/(1 - x) + (1+x)*x^2/(1 - x^2*(1+x))^2 + (1+x)^4*x^6/(1 - x^3*(1+x)^2)^3 + (1+x)^9*x^12/(1 - x^4*(1+x)^3)^4 + (1+x)^16*x^20/(1 - x^5*(1+x)^4)^5 + (1+x)^25*x^30/(1 - x^6*(1+x)^5)^6 + ... + (1+x)^(n^2)*x^(n*(n+1))/(1 - x^(n+1)*(1+x)^n)^(n+1) + ...

RELATED SERIES.

A(1/2) = Sum_{n>=0} (4^n + 3^n)^n / (2*4^n)^n = Sum_{n>=0} 2*4^n * 3^(n^2) / (2*4^n - 3^n)^(n+1) = 3.198779485217682672125325895125...

MATHEMATICA

nmax = 50; CoefficientList[Series[Sum[(1 + x^k*(1+x)^k)^k * x^k, {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 18 2020 *)

PROG

(PARI) {a(n) = my(A=1); A = sum(m=0, n, (1 + x^m*(1+x)^m + x*O(x^n))^m * x^m); polcoeff(A, n)}

for(n=0, 50, print1(a(n), ", "))

(PARI) {a(n) = my(A=1); A = sum(m=0, sqrtint(n+1), (1+x + x*O(x^n))^(m^2) * x^(m*(m+1)) / (1 - x^(m+1)*(1+x)^m + x*O(x^n))^(m+1)); polcoeff(A, n)}

for(n=0, 50, print1(a(n), ", "))

CROSSREFS

Cf. A094214, A337721.

Sequence in context: A126024 A179316 A103597 * A253853 A127678 A199962

Adjacent sequences: A337742 A337743 A337744 * A337746 A337747 A337748

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Sep 17 2020

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 3 20:52 EST 2022. Contains 358543 sequences. (Running on oeis4.)