login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A337745
G.f.: Sum_{n>=0} (1 + x^n*(1+x)^n)^n * x^n.
1
1, 1, 2, 2, 3, 5, 7, 14, 20, 27, 49, 87, 128, 189, 345, 608, 896, 1306, 2216, 3921, 6460, 10068, 15605, 25039, 42584, 73806, 120926, 184288, 281330, 466014, 813404, 1379796, 2212078, 3452038, 5473361, 8953935, 14907941, 24847539, 41157960, 67427023, 108547467, 171888302
OFFSET
0,3
COMMENTS
Limit a(n)/a(n+1) = (sqrt(5) - 1)/2 = 0.6180339887... = A094214.
LINKS
FORMULA
G.f.: Sum_{n>=0} (1 + x^n*(1+x)^n)^n * x^n.
G.f.: Sum_{n>=0} (1+x)^(n^2) * x^(n*(n+1)) / (1 - x^(n+1)*(1+x)^n)^(n+1).
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 2*x^3 + 3*x^4 + 5*x^5 + 7*x^6 + 14*x^7 + 20*x^8 + 27*x^9 + 49*x^10 + 87*x^11 + 128*x^12 + 189*x^13 + 345*x^14 + 608*x^15 + ...
where
A(x) = 1 + (1 + x*(1+x))*x + (1 + x^2*(1+x)^2)^2*x^2 + (1 + x^3*(1+x)^3)^3*x^3 + (1 + x^4*(1+x)^4)^4*x^4 + ... + (1 + x^n*(1+x)^n)^n*x^n + ...
also
A(x) = 1/(1 - x) + (1+x)*x^2/(1 - x^2*(1+x))^2 + (1+x)^4*x^6/(1 - x^3*(1+x)^2)^3 + (1+x)^9*x^12/(1 - x^4*(1+x)^3)^4 + (1+x)^16*x^20/(1 - x^5*(1+x)^4)^5 + (1+x)^25*x^30/(1 - x^6*(1+x)^5)^6 + ... + (1+x)^(n^2)*x^(n*(n+1))/(1 - x^(n+1)*(1+x)^n)^(n+1) + ...
RELATED SERIES.
A(1/2) = Sum_{n>=0} (4^n + 3^n)^n / (2*4^n)^n = Sum_{n>=0} 2*4^n * 3^(n^2) / (2*4^n - 3^n)^(n+1) = 3.198779485217682672125325895125...
MATHEMATICA
nmax = 50; CoefficientList[Series[Sum[(1 + x^k*(1+x)^k)^k * x^k, {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 18 2020 *)
PROG
(PARI) {a(n) = my(A=1); A = sum(m=0, n, (1 + x^m*(1+x)^m + x*O(x^n))^m * x^m); polcoeff(A, n)}
for(n=0, 50, print1(a(n), ", "))
(PARI) {a(n) = my(A=1); A = sum(m=0, sqrtint(n+1), (1+x + x*O(x^n))^(m^2) * x^(m*(m+1)) / (1 - x^(m+1)*(1+x)^m + x*O(x^n))^(m+1)); polcoeff(A, n)}
for(n=0, 50, print1(a(n), ", "))
CROSSREFS
Sequence in context: A126024 A179316 A103597 * A253853 A127678 A199962
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 17 2020
STATUS
approved