The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A337745 G.f.: Sum_{n>=0} (1 + x^n*(1+x)^n)^n * x^n. 1
 1, 1, 2, 2, 3, 5, 7, 14, 20, 27, 49, 87, 128, 189, 345, 608, 896, 1306, 2216, 3921, 6460, 10068, 15605, 25039, 42584, 73806, 120926, 184288, 281330, 466014, 813404, 1379796, 2212078, 3452038, 5473361, 8953935, 14907941, 24847539, 41157960, 67427023, 108547467, 171888302 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Limit a(n)/a(n+1) = (sqrt(5) - 1)/2 = 0.6180339887... = A094214. LINKS Vaclav Kotesovec, Table of n, a(n) for n = 0..2000 FORMULA G.f.: Sum_{n>=0} (1 + x^n*(1+x)^n)^n * x^n. G.f.: Sum_{n>=0} (1+x)^(n^2) * x^(n*(n+1)) / (1 - x^(n+1)*(1+x)^n)^(n+1). EXAMPLE G.f.: A(x) = 1 + x + 2*x^2 + 2*x^3 + 3*x^4 + 5*x^5 + 7*x^6 + 14*x^7 + 20*x^8 + 27*x^9 + 49*x^10 + 87*x^11 + 128*x^12 + 189*x^13 + 345*x^14 + 608*x^15 + ... where A(x) = 1 + (1 + x*(1+x))*x + (1 + x^2*(1+x)^2)^2*x^2 + (1 + x^3*(1+x)^3)^3*x^3 + (1 + x^4*(1+x)^4)^4*x^4 + ... + (1 + x^n*(1+x)^n)^n*x^n + ... also A(x) = 1/(1 - x) + (1+x)*x^2/(1 - x^2*(1+x))^2 + (1+x)^4*x^6/(1 - x^3*(1+x)^2)^3 + (1+x)^9*x^12/(1 - x^4*(1+x)^3)^4 + (1+x)^16*x^20/(1 - x^5*(1+x)^4)^5 + (1+x)^25*x^30/(1 - x^6*(1+x)^5)^6 + ... + (1+x)^(n^2)*x^(n*(n+1))/(1 - x^(n+1)*(1+x)^n)^(n+1) + ... RELATED SERIES. A(1/2) = Sum_{n>=0} (4^n + 3^n)^n / (2*4^n)^n = Sum_{n>=0} 2*4^n * 3^(n^2) / (2*4^n - 3^n)^(n+1) = 3.198779485217682672125325895125... MATHEMATICA nmax = 50; CoefficientList[Series[Sum[(1 + x^k*(1+x)^k)^k * x^k, {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 18 2020 *) PROG (PARI) {a(n) = my(A=1); A = sum(m=0, n, (1 + x^m*(1+x)^m + x*O(x^n))^m * x^m); polcoeff(A, n)} for(n=0, 50, print1(a(n), ", ")) (PARI) {a(n) = my(A=1); A = sum(m=0, sqrtint(n+1), (1+x + x*O(x^n))^(m^2) * x^(m*(m+1)) / (1 - x^(m+1)*(1+x)^m + x*O(x^n))^(m+1)); polcoeff(A, n)} for(n=0, 50, print1(a(n), ", ")) CROSSREFS Cf. A094214, A337721. Sequence in context: A126024 A179316 A103597 * A253853 A127678 A199962 Adjacent sequences: A337742 A337743 A337744 * A337746 A337747 A337748 KEYWORD nonn AUTHOR Paul D. Hanna, Sep 17 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 3 20:52 EST 2022. Contains 358543 sequences. (Running on oeis4.)