login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A126024
Number of subsets of {1,2,3,...,n} whose sum is a square integer (including the empty subset).
13
1, 2, 2, 3, 5, 7, 12, 20, 34, 60, 106, 190, 346, 639, 1183, 2204, 4129, 7758, 14642, 27728, 52648, 100236, 191294, 365827, 700975, 1345561, 2587057, 4981567, 9605777, 18546389, 35851756, 69382558, 134414736, 260658770, 505941852, 982896850
OFFSET
0,2
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..990 (terms n=1..100 from T. D. Noe)
EXAMPLE
The subsets of {1,2,3,4,5} that sum to a square are {}, {1}, {1,3}, {4}, {2,3,4}, {1,3,5} and {4,5}. Thus a(5)=7.
MAPLE
b:= proc(n, i) option remember; (m->
`if`(n=0 or n=m, 1, `if`(n<0 or n>m, 0, b(n, i-1)+
`if`(i>n, 0, b(n-i, i-1)))))(i*(i+1)/2)
end:
a:= proc(n) option remember; `if`(n<0, 0, a(n-1)+
add(b(j^2-n, n-1), j=isqrt(n)..isqrt(n*(n+1)/2)))
end:
seq(a(n), n=0..50); # Alois P. Heinz, Feb 02 2017
MATHEMATICA
g[n_] := Block[{p = Product[1 + z^i, {i, n}]}, Sum[Boole[IntegerQ[Sqrt[k]]]*Coefficient[p, z, k], {k, 0, n*(n + 1)/2}]]; Array[g, 35] (* Ray Chandler, Mar 05 2007 *)
PROG
(Haskell)
import Data.List (subsequences)
a126024 = length . filter ((== 1) . a010052 . sum) .
subsequences . enumFromTo 1
-- Reinhard Zumkeller, Feb 22 2012, Oct 27 2010
CROSSREFS
Cf. A181522. - Reinhard Zumkeller, Oct 27 2010
Row sums of A281871.
Sequence in context: A118987 A284909 A062724 * A179316 A103597 A337745
KEYWORD
nonn
AUTHOR
John W. Layman, Feb 27 2007
EXTENSIONS
Extended by Ray Chandler, Mar 05 2007
a(0)=1 prepended by Alois P. Heinz, Jan 30 2017
STATUS
approved