login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A126024 Number of subsets of {1,2,3,...,n} whose sum is a square integer (including the empty subset). 11
1, 2, 2, 3, 5, 7, 12, 20, 34, 60, 106, 190, 346, 639, 1183, 2204, 4129, 7758, 14642, 27728, 52648, 100236, 191294, 365827, 700975, 1345561, 2587057, 4981567, 9605777, 18546389, 35851756, 69382558, 134414736, 260658770, 505941852, 982896850 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

T. D. Noe and Alois P. Heinz, Table of n, a(n) for n = 0..990 (terms n=1..100 from T. D. Noe)

EXAMPLE

The subsets of {1,2,3,4,5} that sum to a square are {}, {1}, {1,3}, {4}, {2,3,4}, {1,3,5} and {4,5}. Thus a(5)=7.

MAPLE

b:= proc(n, i) option remember; (m->

`if`(n=0 or n=m, 1, `if`(n<0 or n>m, 0, b(n, i-1)+

`if`(i>n, 0, b(n-i, i-1)))))(i*(i+1)/2)

end:

a:= proc(n) option remember; `if`(n<0, 0, a(n-1)+

add(b(j^2-n, n-1), j=isqrt(n)..isqrt(n*(n+1)/2)))

end:

seq(a(n), n=0..50); # Alois P. Heinz, Feb 02 2017

MATHEMATICA

g[n_] := Block[{p = Product[1 + z^i, {i, n}]}, Sum[Boole[IntegerQ[Sqrt[k]]]*Coefficient[p, z, k], {k, 0, n*(n + 1)/2}]]; Array[g, 35] (* Ray Chandler, Mar 05 2007 *)

PROG

(Haskell)

import Data.List (subsequences)

a126024 = length . filter ((== 1) . a010052 . sum) .

subsequences . enumFromTo 1

-- Reinhard Zumkeller, Feb 22 2012, Oct 27 2010

CROSSREFS

Cf. A053632, A127542.

Cf. A181522. - Reinhard Zumkeller, Oct 27 2010

Cf. A010052, A284250.

Row sums of A281871.

Sequence in context: A060699 A284909 A062724 * A179316 A103597 A337745

Adjacent sequences: A126021 A126022 A126023 * A126025 A126026 A126027

KEYWORD

nonn

AUTHOR

John W. Layman, Feb 27 2007

EXTENSIONS

Extended by Ray Chandler, Mar 05 2007

a(0)=1 prepended by Alois P. Heinz, Jan 30 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 30 12:56 EST 2023. Contains 359945 sequences. (Running on oeis4.)