login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A337721
G.f.: Sum_{n>=0} (1 + x*(1+x)^n)^n * x^n.
2
1, 1, 2, 4, 9, 23, 62, 179, 549, 1773, 6003, 21233, 78187, 298894, 1183387, 4842221, 20438964, 88849325, 397183838, 1823456223, 8587051052, 41434641992, 204654311282, 1033757421996, 5335693879201, 28118977852767, 151192761513229, 828884087889407
OFFSET
0,3
FORMULA
G.f.: Sum_{n>=0} (1 + x*(1+x)^n)^n * x^n.
G.f.: Sum_{n>=0} (1+x)^(n^2) * x^(2*n) / (1 - x*(1+x)^n)^(n+1).
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 4*x^3 + 9*x^4 + 23*x^5 + 62*x^6 + 179*x^7 + 549*x^8 + 1773*x^9 + 6003*x^10 + 21233*x^11 + 78187*x^12 + ...
where
A(x) = 1 + (1 + x*(1+x))*x + (1 + x*(1+x)^2)^2*x^2 + (1 + x*(1+x)^3)^3*x^3 + (1 + x*(1+x)^4)^4*x^4 + ... + (1 + x*(1+x)^n)^n*x^n + ...
also
A(x) = 1/(1 - x) + (1+x)*x^2/(1 - x*(1+x))^2 + (1+x)^4*x^4/(1 - x*(1+x)^2)^3 + (1+x)^9*x^6/(1 - x*(1+x)^3)^4 + (1+x)^16*x^8/(1 - x*(1+x)^4)^5 + (1+x)^25*x^10/(1 - x*(1+x)^5)^6 + ... + (1+x)^(n^2)*x^(2*n)/(1 - x*(1+x)^n)^(n+1) + ...
MATHEMATICA
nmax = 30; CoefficientList[Series[Sum[(1 + x*(1+x)^k)^k * x^k, {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 17 2020 *)
PROG
(PARI) {a(n) = my(A=1); A = sum(m=0, n, (1 + x*(1+x)^m + x*O(x^n))^m * x^m); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
(PARI) {a(n) = my(A=1); A = sum(m=0, n, (1+x + x*O(x^n))^(m^2) * x^(2*m) / (1 - x*(1+x)^m + x*O(x^n))^(m+1)); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Cf. A337720.
Sequence in context: A190277 A274882 A127384 * A369328 A058585 A001573
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 17 2020
STATUS
approved