OFFSET
0,3
FORMULA
G.f.: Sum_{n>=0} (1 + x*(1+x)^n)^n * x^n.
G.f.: Sum_{n>=0} (1+x)^(n^2) * x^(2*n) / (1 - x*(1+x)^n)^(n+1).
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 4*x^3 + 9*x^4 + 23*x^5 + 62*x^6 + 179*x^7 + 549*x^8 + 1773*x^9 + 6003*x^10 + 21233*x^11 + 78187*x^12 + ...
where
A(x) = 1 + (1 + x*(1+x))*x + (1 + x*(1+x)^2)^2*x^2 + (1 + x*(1+x)^3)^3*x^3 + (1 + x*(1+x)^4)^4*x^4 + ... + (1 + x*(1+x)^n)^n*x^n + ...
also
A(x) = 1/(1 - x) + (1+x)*x^2/(1 - x*(1+x))^2 + (1+x)^4*x^4/(1 - x*(1+x)^2)^3 + (1+x)^9*x^6/(1 - x*(1+x)^3)^4 + (1+x)^16*x^8/(1 - x*(1+x)^4)^5 + (1+x)^25*x^10/(1 - x*(1+x)^5)^6 + ... + (1+x)^(n^2)*x^(2*n)/(1 - x*(1+x)^n)^(n+1) + ...
MATHEMATICA
nmax = 30; CoefficientList[Series[Sum[(1 + x*(1+x)^k)^k * x^k, {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 17 2020 *)
PROG
(PARI) {a(n) = my(A=1); A = sum(m=0, n, (1 + x*(1+x)^m + x*O(x^n))^m * x^m); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
(PARI) {a(n) = my(A=1); A = sum(m=0, n, (1+x + x*O(x^n))^(m^2) * x^(2*m) / (1 - x*(1+x)^m + x*O(x^n))^(m+1)); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 17 2020
STATUS
approved