login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A253852
a(n) = a(n-4) * (a(n-3) + a(n-1)) / a(n-3), with a(0) = a(1) = a(2) = a(3) = 1.
1
1, 1, 1, 1, 2, 3, 4, 3, 4, 6, 12, 12, 12, 12, 24, 36, 48, 36, 48, 72, 144, 144, 144, 144, 288, 432, 576, 432, 576, 864, 1728, 1728, 1728, 1728, 3456, 5184, 6912, 5184, 6912, 10368, 20736, 20736, 20736, 20736, 41472, 62208, 82944, 62208, 82944, 124416, 248832
OFFSET
0,5
FORMULA
a(n) = 1 / a(3-n) for all n in Z.
a(n+10) = 12*a(n), a(n+7)*a(n) = a(n+5)*a(n+2), a(n+6)*a(n+5) = 12*a(n+1)*a(n) for all n in Z.
0 = a(n)*(+a(n+1) + a(n+3)) + a(n+1)*(-a(n+4)) for all n in Z.
a(n) = 12^floor(n/10)*((1+0^((n-4) mod 10)+2*0^((n-5) mod 10)+2*0^((n-7) mod 10)+3*0^((n-6) mod 10)+3*0^((n-8) mod 10)+5*0^((n-9) mod 10)) mod 10). - Wesley Ivan Hurt, Apr 28 2015
G.f.: -(6*x^9+4*x^8+3*x^7+4*x^6+3*x^5+2*x^4+x^3+x^2+x+1) / (12*x^10-1). - Colin Barker, Apr 28 2015
EXAMPLE
G.f. = 1 + x + x^2 + x^3 + 2*x^4 + 3*x^5 + 4*x^6 + 3*x^7 + 4*x^8 + 6*x^9 + ...
MATHEMATICA
a[n_] := a[n] = a[n - 4] (a[n - 3] + a[n - 1])/a[n - 3]; a[0] = a[1] = a[2] = a[3] = 1; Array[a, 50] (* or *)
LinearRecurrence[{0, 0, 0, 0, 0, 0, 0, 0, 0, 12}, {1, 1, 1, 2, 3, 4, 3, 4, 6, 12}, 50] (* or *)
CoefficientList[ Series[(6x^9 + 4x^8 + 3x^7 + 4x^6 + 3x^5 + 2x^4 + x^3 + x^2 + x + 1)/(1 - 12 x^10), {x, 0, 50}], x] (* Robert G. Wilson v, Apr 28 2015 *)
PROG
(PARI) {a(n) = my(q=n\10, r=n%10+1); 2^([0, 0, 0, 0, 1, 0, 2, 0, 2, 1][r]+2*q) * 3^([0, 0, 0, 0, 0, 1, 0, 1, 0, 1][r]+q)};
(PARI) Vec(-(6*x^9+4*x^8+3*x^7+4*x^6+3*x^5+2*x^4+x^3+x^2+x+1)/(12*x^10-1) + O(x^100)) \\ Colin Barker, Apr 28 2015
(Magma) I:=[1, 1, 1, 1, 2, 3, 4, 3, 4, 6]; [n le 10 select I[n] else 12*Self(n-10): n in [1..100]]; // Vincenzo Librandi, Apr 29 2015
CROSSREFS
Sequence in context: A221356 A177329 A360379 * A103672 A309255 A375290
KEYWORD
nonn,easy
AUTHOR
Michael Somos, Jan 17 2015
STATUS
approved