The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A072214 Number of partitions of Fibonacci(n). 5
 1, 1, 2, 3, 7, 22, 101, 792, 12310, 451276, 49995925, 22540654445, 60806135438329, 1596675274490756791, 758949605954969709105721, 14362612091531863067120268402228, 29498346711208035625096160181520548669694, 23537552807178094028466621551669121053281242290608650 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Also number of partitions of F(n+2) whose highest term is F(n+1) ( or, which is the same, whose number of terms is F(n+1)). - Philippe LALLOUET (philip.lallouet(AT)wanadoo.fr), Sep 14 2007 Divide the set of partitions P(i,j) in two subsets : 1) Partitions containing at least one term 1; Deleting a term 1, we prove that their number is P(i-1,j-1) 2). Subtracting 1 from each term of the other partitions we prove that their number is P(i-j,j) Hence P(i,j) - P(i-1,j-1) = P(i-j,j) Replacing successively in this formula i by i-1 and j by j-1 and summing all these equalities we get, if j>= floor((i+1)/2) P(i,j)=sum ({k,1,j}P(i-j;k))= A000041(i-j) As for i=F(n+2) and j=F(n+1) the condition is satisfied : P(F(n+2),F(n+1)) = P (F(n+2),F(n+1)= A000041(n) = 1072214(n). - Philippe LALLOUET (philip.lallouet(AT)wanadoo.fr), Sep 14 2007 LINKS Seiichi Manyama, Table of n, a(n) for n = 1..26 FORMULA Let P(i,j) denote the number of partitions of i whose highest term is j A072214(n) = A000041(F(n)) = P(F(n+2),F(n+1)) - Philippe LALLOUET (philip.lallouet(AT)wanadoo.fr), Sep 14 2007 a(n) = A000041(A000045(n)). - Michel Marcus, May 09 2016 a(n) = [x^Fibonacci(n)] Product_{k>=1} 1/(1 - x^k). - Ilya Gutkovskiy, Jun 08 2017 EXAMPLE F(5) = 5, F(4) = 3: 5 = 3+2 = 3+1+1 (or 5 = 3+1+1 = 2+2+1), then P(5,3) = 2 = A000041(2) = A000041(F(3)) = A072214(3). MATHEMATICA Table[PartitionsP[Fibonacci[n]], {n, 1, 17}] PROG (Haskell) a072214 = a000041 . a000045 . (+ 1)  -- Reinhard Zumkeller, Dec 09 2015 (MAGMA) [NumberOfPartitions(Fibonacci(n)): n in [1..18]]; // Vincenzo Librandi May 09 2016 (PARI) a(n) = numbpart(fibonacci(n)); \\ Michel Marcus, May 09 2016 (Python) from sympy import npartitions as p, fibonacci as f def a(n): return p(f(n)) # Indranil Ghosh, Jun 08 2017 CROSSREFS Cf. A000041, A000045. Sequence in context: A077210 A324620 A151908 * A233535 A007660 A158055 Adjacent sequences:  A072211 A072212 A072213 * A072215 A072216 A072217 KEYWORD nonn AUTHOR Jeff Burch, Jul 03 2002 EXTENSIONS Edited by Robert G. Wilson v, Jul 06 2002 a(18) by Vincenzo Librandi, May 09 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 28 13:20 EDT 2020. Contains 334683 sequences. (Running on oeis4.)