login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A367857
a(n) is the smallest base b such that (b+1)^n in base b is a palindrome.
1
2, 2, 2, 7, 11, 21, 36, 71, 127, 253, 463, 925, 1717, 3433, 6436, 12871, 24311, 48621, 92379, 184757, 352717, 705433, 1352079, 2704157, 5200301, 10400601, 20058301, 40116601, 77558761, 155117521, 300540196, 601080391, 1166803111
OFFSET
1,1
COMMENTS
Empirically the same as A001405(n)+1 apart from a(2) where 11^10=1001 in base 2 (3^2=9 in base 10) and a(3) where 11^11=11011 in base 2 (3^3=27 in base 10).
FORMULA
Conjecture: a(n) = binomial(n, floor(n/2))+1 for n>3.
EXAMPLE
For n=5 the minimum base required is 11, giving 11^5=15aa51 (12^5=248832 in base 10).
MATHEMATICA
a[n_] := Module[{b = 2, d}, While[(d = IntegerDigits[(b + 1)^n, b]) != Reverse[d], b++ ]; b] ;
Table[a[n], {n, 33}] (* James C. McMahon, Dec 13 2023 after PARI *)
PROG
(Python)
from itertools import count
from sympy.ntheory.factor_ import digits
def ispal(d): return d == d[::-1]
def a(n): return next(b for b in count(2) if ispal(digits((b+1)**n, b)[1:]))
print([a(n) for n in range(1, 21)]) # Michael S. Branicky, Dec 04 2023
(PARI) a(n) = my(b=2, d); while ((d=digits((b+1)^n, b)) != Vecrev(d), b++); b; \\ Michel Marcus, Dec 05 2023
CROSSREFS
Cf. A001405.
Sequence in context: A023573 A138757 A158927 * A121258 A087421 A309574
KEYWORD
nonn,base
AUTHOR
James Carruthers, Dec 03 2023
EXTENSIONS
a(8)-a(33) from Michael S. Branicky, Dec 04 2023
STATUS
approved