|
|
A278925
|
|
a(n) = permanent M_n where M_n is the n X n matrix m(i,j) = i^3 + j^3.
|
|
4
|
|
|
1, 2, 113, 38736, 46311652, 143820883800, 966462062838180, 12412328008727861760, 278484670746890475310656, 10197331743850942940587152000, 577793817845799602600135280168000, 48534819511412868687827815575204633600, 5834998526939444017550860154062183732711680
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
Vaclav Kotesovec, Table of n, a(n) for n = 0..36
|
|
FORMULA
|
a(n) ~ c * d^n * n!^4 / n^(3/2), where d = 6.538385468679... and c = 0.84959670006...
|
|
MAPLE
|
with(LinearAlgebra):
a:= n-> `if`(n=0, 1, Permanent(Matrix(n, (i, j)-> i^3+j^3))):
seq(a(n), n=0..16);
|
|
MATHEMATICA
|
Flatten[{1, Table[Permanent[Table[i^3+j^3, {i, 1, n}, {j, 1, n}]], {n, 1, 15}]}]
|
|
PROG
|
(PARI) {a(n) = matpermanent(matrix(n, n, i, j, i^3+j^3))}
for(n=0, 20, print1(a(n), ", ")) \\ Vaclav Kotesovec, Dec 21 2018
|
|
CROSSREFS
|
Cf. A204249, A278847, A278926.
Sequence in context: A042567 A142112 A285145 * A053976 A217088 A034312
Adjacent sequences: A278922 A278923 A278924 * A278926 A278927 A278928
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Vaclav Kotesovec, Dec 01 2016
|
|
STATUS
|
approved
|
|
|
|