login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A278924
A sequence showing numerators in ratios tending to the constant Pi/4 = 0.785398163397448... .
2
4, 296, 36772, 1288688, 96641548, 26576092808, 8637277012172, 1079658805128928, 91770997994914276, 43591225139846360008
OFFSET
1,1
COMMENTS
The ratios c(n)/d(n) rapidly tend to the constant Pi/4 = 0.785398163397448... with increasing index n: abs(Pi/4 - c(1)/d(1)) > abs(Pi/4 - c(2)/d(2)) > abs(Pi/4 - c(3)/d(3)) > abs(Pi/4 - c(4)/d(4)) ..., where c(n) = A278924(n) and d(n) = A278364(n) are even and odd positive integers, respectively.
LINKS
S. M. Abrarov and B. M. Quine, A generalized Viéte's-like formula for pi with rapid convergence, arXiv:1610.07713 [math.GM], (2016).
FORMULA
arctan(1) = I*lim_{M -> inf}Sum_{m = 1..floor(M/2) + 1}(1/(2*m - 1))*(1/(1 + 2*I)^(2*m - 1) - 1/(1 - 2*I)^(2*m - 1))
EXAMPLE
------------------------------------------------
n c(n) d(n)
------------------------------------------------
1 4 5
2 296 375
3 36772 46875
4 1288688 1640625
5 96641548 123046875
6 26576092808 33837890625
7 8637277012172 10997314453125
8 1079658805128928 1374664306640625
9 91770997994914276 116846466064453125
10 43591225139846360008 55502071380615234375
------------------------------------------------
At n = 6 the ratio c(6)/d(6) = 26576092808/33837890625 is close to Pi/4. However, at n = 10 the ratio c(10)/d(10) = 43591225139846360008/55502071380615234375 becomes more closer to Pi/4.
MATHEMATICA
x := 1; (* argument x *)
M := 1; (* initial value for the integer M *)
n := 1; (* index *)
(* Note that arctan(1) = Pi/4 *)
atan := I*Sum[(1/(2*m - 1))*(1/(1 + 2*(I/x))^(2*m - 1) - 1/(1 - 2*(I/x))^(2*m - 1)), {m, 1, Floor[M/2] + 1}];
sqn := {}; (* initiate the sequence *)
AppendTo[sqn, {"Index n", "Numerators", "Denominators"}];
While[M <= 20, AppendTo[sqn, {n, Numerator[atan], Denominator[atan]}];
{M = M + 2, n++}];
Print[MatrixForm[sqn]]
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
Sanjar Abrarov, Dec 01 2016
STATUS
approved