login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A278921 Semiprimes of the form p*q where p < q such that q divides p^(q+1) + 1 and (q-p)^(q+1) + 1. 2
10, 15, 65, 221, 493, 671, 1147, 1219, 3439, 5069, 12209, 14893, 20737, 24503, 30083, 49813, 61937, 77507, 91277, 97297, 100337, 102719, 109283, 109783, 113521, 132427, 144301, 178991, 204851, 244523, 245041, 246559, 257149, 258749, 312167, 339497, 397219, 433091, 434617, 461893, 465763 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

q is always a Pythagorean prime (A002144).

Semiprimes of the form p*q where p < q such that q divides p^(q+1) + k and (q-p)^(q+1) + k:

k = 1: (this sequence);

k = 2: 6, 33, 119, 247, 451, ...

k = 3: 14, 35, 91, 341, ...

k = 4: 39, 145, 371, ...

For every positive odd number q (whether prime or not), every integer p in 0..q, and every integer k, if q divides p^(q+1) + k, then it necessarily follows that q also divides (q-p)^(q+1) + k; thus, this sequence could be more simply defined as "Semiprimes of the form p*q where p < q such that q divides p^(q+1) + 1." - Jon E. Schoenfield, Dec 07 2016

LINKS

Charles R Greathouse IV, Table of n, a(n) for n = 1..10000

MATHEMATICA

Take[#, 41] &@ Union@ Flatten@ Table[Function[q, q Select[Prime@ Range@ n, Function[p, And[Divisible[p^(q + 1) + 1, q], Divisible[(q - p)^(q + 1) + 1, q]]]]]@ Prime@ n, {n, 600}] (* Michael De Vlieger, Dec 02 2016 *)

PROG

(PARI) list(lim)=my(v=List()); forprime(q=5, lim\2, if(q%4>2, next); forprime(p=2, min(lim\q, q-2), if(Mod(p, q)^(q+1)==-1 && Mod(q-p, q)^(q+1)==-1, listput(v, p*q)))); Set(v) \\ Charles R Greathouse IV, Dec 02 2016

CROSSREFS

Cf. A001358, A002144, A006881, A279024.

Sequence in context: A092192 A119039 A047189 * A035407 A020139 A056522

Adjacent sequences:  A278918 A278919 A278920 * A278922 A278923 A278924

KEYWORD

nonn

AUTHOR

Juri-Stepan Gerasimov, Dec 01 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 25 07:27 EDT 2021. Contains 347654 sequences. (Running on oeis4.)