The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A278364 A sequence showing denominators in ratios tending to the constant Pi/4 = 0.785398163397448... . 2
5, 375, 46875, 1640625, 123046875, 33837890625, 10997314453125, 1374664306640625, 116846466064453125, 55502071380615234375 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
The ratios c(n)/d(n) rapidly tend to the constant Pi/4 = 0.785398163397448... with increasing index n: abs(Pi/4 - c(1)/d(1)) > abs(Pi/4 - c(2)/d(2)) > abs(Pi/4 - c(3)/d(3)) > abs(Pi/4 - c(4)/d(4)) ..., where c(n) = A278924(n) and d(n) = A278364(n) are even and odd positive integers, respectively. All denominators d(n) are divisible by 5.
LINKS
S. M. Abrarov and B. M. Quine, A generalized Viéte's-like formula for pi with rapid convergence, arXiv:1610.07713 [math.GM], (2016).
FORMULA
arctan(1) = I*lim_{M -> inf}Sum_{m = 1..floor(M/2) + 1}(1/(2*m - 1))*(1/(1 + 2*I)^(2*m - 1) - 1/(1 - 2*I)^(2*m - 1))
EXAMPLE
------------------------------------------------
n c(n) d(n)
------------------------------------------------
1 4 5
2 296 375
3 36772 46875
4 1288688 1640625
5 96641548 123046875
6 26576092808 33837890625
7 8637277012172 10997314453125
8 1079658805128928 1374664306640625
9 91770997994914276 116846466064453125
10 43591225139846360008 55502071380615234375
------------------------------------------------
At n = 6 the ratio c(6)/d(6) = 26576092808/33837890625 is close to Pi/4. However, at n = 10 the ratio c(10)/d(10) = 43591225139846360008/55502071380615234375 becomes more closer to Pi/4.
MATHEMATICA
x := 1; (* argument x *)
M := 1; (* initial value for the integer M *)
n := 1; (* index *)
(* Note that arctan(1) = Pi/4 *)
atan := I*Sum[(1/(2*m - 1))*(1/(1 + 2*(I/x))^(2*m - 1) - 1/(1 - 2*(I/x))^(2*m - 1)), {m, 1, Floor[M/2] + 1}];
sqn := {}; (* initiate the sequence *)
AppendTo[sqn, {"Index n", "Numerators", "Denominators"}];
While[M <= 20, AppendTo[sqn, {n, Numerator[atan], Denominator[atan]}];
{M = M + 2, n++}];
Print[MatrixForm[sqn]]
CROSSREFS
Sequence in context: A098038 A354831 A072172 * A214008 A208094 A273397
KEYWORD
nonn,frac
AUTHOR
Sanjar Abrarov, Dec 04 2016
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 18 16:37 EDT 2024. Contains 373482 sequences. (Running on oeis4.)