login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A278928
Decimal expansion of sqrt(sqrt(2) + 1).
2
1, 5, 5, 3, 7, 7, 3, 9, 7, 4, 0, 3, 0, 0, 3, 7, 3, 0, 7, 3, 4, 4, 1, 5, 8, 9, 5, 3, 0, 6, 3, 1, 4, 6, 9, 4, 8, 1, 6, 4, 5, 8, 3, 4, 9, 9, 4, 1, 0, 3, 0, 7, 8, 3, 6, 3, 3, 2, 6, 7, 1, 1, 4, 8, 3, 3, 3, 6, 7, 5, 2, 5, 6, 7, 8, 8, 7, 3, 3, 1, 0, 2, 7, 2, 7, 9
OFFSET
1,2
COMMENTS
A quartic integer with minimal polynomial x^4 - 2*x^2 - 1. - Charles R Greathouse IV, Dec 01 2016
Suppose f(n) has the recurrence f(2*n) = f(2*n - 1) + f(2*n - 2) and f(2*n + 1) = f(2*n) + f(2*n - 2), where f(0) and f(1) are not both 0. Then, lim_{n -> oo} f(n)^(1/n) is this constant.
Apart from the first digit, the same as A190283. - R. J. Mathar, Dec 09 2016
Imaginary part of sqrt(1 + i)^3, where i is the imaginary unit such that i^2 = -1. See A154747 for real part. - Alonso del Arte, Sep 09 2019
REFERENCES
Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 7.4, p. 466.
FORMULA
Equals 1/A154747.
Limit_{n -> oo} A002965(n)^(1/n).
From Peter Bala, Jul 01 2024: (Start)
This constant occurs in the evaluation of Integral_{x = 0..Pi/2} 1/(1 + sin^4(x)) dx = Pi/4 * sqrt(sqrt(2) + 1).
Equals 2*Sum_{n >= 0} (-1/16)^n * binomial(4*n, 2*n) (a slowly converging series). (End)
Equals 2^(3/4)*cos(Pi/8). - Vaclav Kotesovec, Jul 01 2024
Equals Product_{k>=0} coth(Pi/4 + k*Pi/2). - Antonio Graciá Llorente, Dec 19 2024
Equals sqrt(A014176) = 1/A154747 = exp(A245592). - Hugo Pfoertner, Dec 19 2024
EXAMPLE
1.553773974030037307344158953063146948164583499410307836332671...
MAPLE
Digits:=100: evalf(sqrt(sqrt(2)+1)); # Wesley Ivan Hurt, Dec 01 2016
MATHEMATICA
RealDigits[Sqrt[Sqrt[2] + 1], 10, 100][[1]] (* Wesley Ivan Hurt, Dec 01 2016 *)
PROG
(PARI) sqrt(sqrt(2)+1) \\ Charles R Greathouse IV, Dec 01 2016
(PARI) polrootsreal(x^4 - 2*x^2 - 1)[2] \\ Charles R Greathouse IV, Dec 01 2016
(Magma) Sqrt(1+Sqrt(2)); // G. C. Greubel, Apr 14 2018
CROSSREFS
Cf. A309948 and A309949 for real and imaginary parts of sqrt(1 + i).
Sequence in context: A232813 A267033 A306982 * A273826 A213054 A232609
KEYWORD
nonn,cons,changed
AUTHOR
Bobby Jacobs, Dec 01 2016
STATUS
approved