OFFSET
1,2
COMMENTS
A quartic integer with minimal polynomial x^4 - 2*x^2 - 1. - Charles R Greathouse IV, Dec 01 2016
Suppose f(n) has the recurrence f(2*n) = f(2*n - 1) + f(2*n - 2) and f(2*n + 1) = f(2*n) + f(2*n - 2), where f(0) and f(1) are not both 0. Then, lim_{n -> oo} f(n)^(1/n) is this constant.
Apart from the first digit, the same as A190283. - R. J. Mathar, Dec 09 2016
Imaginary part of sqrt(1 + i)^3, where i is the imaginary unit such that i^2 = -1. See A154747 for real part. - Alonso del Arte, Sep 09 2019
REFERENCES
Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 7.4, p. 466.
LINKS
FORMULA
Equals 1/A154747.
Limit_{n -> oo} A002965(n)^(1/n).
From Peter Bala, Jul 01 2024: (Start)
This constant occurs in the evaluation of Integral_{x = 0..Pi/2} 1/(1 + sin^4(x)) dx = Pi/4 * sqrt(sqrt(2) + 1).
Equals 2*Sum_{n >= 0} (-1/16)^n * binomial(4*n, 2*n) (a slowly converging series). (End)
Equals 2^(3/4)*cos(Pi/8). - Vaclav Kotesovec, Jul 01 2024
Equals Product_{k>=0} coth(Pi/4 + k*Pi/2). - Antonio Graciá Llorente, Dec 19 2024
EXAMPLE
1.553773974030037307344158953063146948164583499410307836332671...
MAPLE
Digits:=100: evalf(sqrt(sqrt(2)+1)); # Wesley Ivan Hurt, Dec 01 2016
MATHEMATICA
RealDigits[Sqrt[Sqrt[2] + 1], 10, 100][[1]] (* Wesley Ivan Hurt, Dec 01 2016 *)
PROG
(PARI) sqrt(sqrt(2)+1) \\ Charles R Greathouse IV, Dec 01 2016
(PARI) polrootsreal(x^4 - 2*x^2 - 1)[2] \\ Charles R Greathouse IV, Dec 01 2016
(Magma) Sqrt(1+Sqrt(2)); // G. C. Greubel, Apr 14 2018
CROSSREFS
KEYWORD
AUTHOR
Bobby Jacobs, Dec 01 2016
STATUS
approved