

A273826


Number of ordered ways to write n as x^2 + y^2 + z^2 + w^2 with x*y + y*z + z*w a fourth power, where x is a positive integer, y is a nonnegative integer, and z and w are integers.


2



1, 5, 5, 3, 8, 6, 5, 4, 2, 11, 5, 5, 10, 1, 3, 1, 9, 15, 4, 9, 2, 4, 6, 2, 13, 13, 10, 7, 8, 6, 3, 5, 9, 14, 6, 9, 13, 9, 9, 10, 13, 11, 5, 4, 14, 5, 8, 5, 6, 15, 10, 17, 14, 13, 6, 1, 18, 17, 2, 8, 8, 5, 17, 3, 23, 15, 9, 17, 10, 9
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Conjecture: (i) a(n) > 0 for all n > 0, and a(n) = 1 only for n = 16^k*m (k = 0,1,2,... and m = 1, 14, 56, 91, 184, 329, 355, 1016).
(ii) Any positive integer can be written as x^2 + y^2 + z^2 + w^2 with x*y + y*z + z*w a nonnegative cube, where x is a positive integer, y is a nonnegative integer, and z and w are integers.
(iii) For each triple (a,b,c) = (1,1,2), (1,1,3), (1,2,2), (1,2,3), (1,3,4), (1,5,3), (1,6,2), (2,2,6), (4,4,12), (4,4,16), (4,8,8), (4,12,16), (4,20,12), (8,8,16), (8,8,24), (8,8,32), (8,24,16), any natural number can be written as x^2 + y^2 + z^2 + w^2 with x,y,z,w integers such that a*x*y + b*y*z + c*z*w is a fourth power.
For more conjectural refinements of Lagrange's foursquare theorem, see the author's preprint arXiv:1604.06723.


LINKS

ZhiWei Sun, Table of n, a(n) for n = 1..7000
YuChen Sun and ZhiWei Sun, Two refinements of Lagrange's foursquare theorem, arXiv:1605.03074 [math.NT], 2016.
ZhiWei Sun, Refining Lagrange's foursquare theorem, arXiv:1604.06723 [math.GM], 2016.


EXAMPLE

a(1) = 1 since 1 = 1^2 + 0^2 + 0^2 + 0^2 with 1 > 0, 0 = 0 and 1*0 + 0*0 + 0*0 = 0^4.
a(14) = 1 since 14 = 3^2 + 1^2 + (2)^2 + 0^2 with 3 > 0, 1 > 0 and 3*1 + 1*(2) + (2)*0 = 1^4.
a(56) = 1 since 56 = 6^2 + 4^2 + (2)^2 + 0^2 with 6 > 0, 4 > 0 and 6*4 + 4*(2) + (2)*0 = 2^4.
a(91) = 1 since 91 = 4^2 + 7^2 + (1)^2 + 5^2 with 4 > 0, 7 > 0 and 4*7 + 7*(1) + (1)*5 = 2^4.
a(184) = 1 since 184 = 10^2 + 4^2 + (2)^2 + 8^2 with 10 > 0, 4 > 0 and 10*4 + 4*(2) + (2)*8 = 2^4.
a(329) = 1 since 329 = 18^2 + 1^2 + (2)^2 + 0^2 with 18 > 0, 1 > 0 and 18*1 + 1*(2) + (2)*0 = 2^4.
a(355) = 1 since 355 = 17^2 + 1^2 + (8)^2 + 1^2 with 17 > 0, 1 > 0 and 17*1 + 1*(8) + (8)*1 = 1^4.
a(1016) = 1 since 1016 = 2^2 + 20^2 + 6^2 + (24)^2 with 2 > 0, 20 > 0 and 2*20 + 20*6 + 6*(24) = 2^4.


MATHEMATICA

SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]
QQ[n_]:=QQ[n]=IntegerQ[n^(1/4)]
Do[r=0; Do[If[SQ[nx^2y^2z^2]&&QQ[x*y+y*(1)^j*z+(1)^(j+k)*z*Sqrt[nx^2y^2z^2]], r=r+1], {x, 1, Sqrt[n]}, {y, 0, Sqrt[nx^2]}, {z, 0, Sqrt[nx^2y^2]}, {j, 0, Min[1, z]}, {k, 0, Min[1, Sqrt[nx^2y^2z^2]]}]; Print[n, " ", r]; Continue, {n, 1, 70}]


CROSSREFS

Cf. A000118, A000290, A000578, A000583, A260625, A261876, A262357, A267121, A268197, A268507, A269400, A270073, A270969, A271510, A271513, A271518, A271608, A271665, A271714, A271721, A271724, A271775, A271778, A271824, A272084, A272332, A272351, A272620, A272888, A272977, A273021, A273107, A273108, A273110, A273134, A273278, A273294, A273302, A273404, A273429, A273432, A273458, A273568, A273616.
Sequence in context: A267033 A306982 A278928 * A213054 A232609 A225666
Adjacent sequences: A273823 A273824 A273825 * A273827 A273828 A273829


KEYWORD

nonn


AUTHOR

ZhiWei Sun, May 31 2016


STATUS

approved



