login
A273432
Number of ordered ways to write n as x^2 + y^2 + z^2 + w^2 with 2*x + y - z a nonnegative cube, where x,y,z,w are nonnegative integers with y <= z.
9
1, 1, 2, 2, 1, 1, 4, 1, 1, 3, 1, 3, 2, 1, 3, 3, 2, 3, 5, 2, 3, 4, 6, 1, 3, 5, 1, 6, 1, 3, 7, 2, 2, 5, 6, 5, 6, 3, 6, 4, 1, 3, 4, 5, 4, 5, 7, 2, 3, 8, 6, 7, 3, 4, 8, 3, 2, 6, 3, 5, 7, 3, 8, 7, 2, 4, 10, 4, 4, 7, 9, 7, 2, 4, 2, 7, 3, 5, 11, 2, 4
OFFSET
0,3
COMMENTS
Conjecture: (i) For each c = 1, 2, 4 and n = 0,1,2,..., we can write n as x^2 + y^2 + z^2 + w^2 with c*(2x+y-z) a nonnegative cube, where x,y,z,w are nonnegative integers with y <= z.
(ii) Each n = 0,1,2,.... can be written as x^2 + y^2 + z^2 + w^2 with x-y+z a nonnegative cube, where x,y,z,w are integers with x >= y >= 0 and x >= |z|.
The author proved in arXiv:1604.06723 that for each a = 1, 2 any natural number can be written as x^2 + y^2 + z^2 + w^2 with x,y,z,w integers such that x + y + a*z is a cube.
See also A273458 for a similar conjecture.
For more conjectural refinements of Lagrange's four-square theorem, see the author's preprint arXiv:1604.06723.
LINKS
Zhi-Wei Sun, Refining Lagrange's four-square theorem, arXiv:1604.06723 [math.GM], 2016.
EXAMPLE
a(1) = 1 since 1 = 0^2 + 0^2 + 0^2 + 1^2 with 0 = 0 and 2*0 + 0 - 0 = 0^3.
a(4) = 1 since 4 = 0^2 + 0^2 + 0^2 + 2^2 with 0 = 0 and 2*0 + 0 - 0 = 0^3.
a(8) = 1 since 8 = 0^2 + 2^2 + 2^2 + 0^2 with 2 = 2 and 2*0 + 2 - 2 = 0^3.
a(10) = 1 since 10 = 1^2 + 1^2 + 2^2 + 2^2 with 1 < 2 and 2*1 + 1 - 2 = 1^3.
a(13) = 1 since 13 = 2^2 + 0^2 + 3^2 + 0^2 with 0 < 3 and 2*2 + 0 - 3 = 1^3.
a(23) = 1 since 23 = 1^2 + 2^2 + 3^2 + 3^2 with 2 < 3 and 2*1 + 2 - 3 = 1^3.
a(26) = 1 since 26 = 1^2 + 3^2 + 4^2 + 0^2 with 3 < 4 and 2*1 + 3 - 4 = 1^3.
a(28) = 1 since 28 = 4^2 + 2^2 + 2^2 + 2^2 with 2 = 2 and 2*4 + 2 - 2 = 2^3.
a(40) = 1 since 40 = 4^2 + 2^2 + 2^2 + 4^2 with 2 = 2 and 2*4 + 2 - 2 = 2^3.
a(104) = 1 since 104 = 4^2 + 6^2 + 6^2 + 4^2 with 6 = 6 and 2*4 + 6 - 6 = 2^3.
a(138) = 1 since 138 = 3^2 + 5^2 + 10^2 + 2^2 with 5 < 10 and 2*3 + 5 - 10 =1^3.
a(200) = 1 since 200 = 0^2 + 10^2 + 10^2 + 0^2 with 10 = 10 and 2*0 + 10 - 10 = 0^3.
a(296) = 1 since 296 = 8^2 + 6^2 + 14^2 + 0^2 with 6 < 14 and 2*8 + 6 - 14 = 2^3.
a(328) = 1 since 328 = 0^2 + 6^2 + 6^2 + 16^2 with 6 = 6 and 2*0 + 6 - 6 = 0^3.
a(520) = 1 since 520 = 4^2 + 2^2 + 10^2 + 20^2 with 2 < 10 and 2*4 + 2 - 10 = 0^3.
a(776) = 1 since 776 = 0^2 + 10^2 + 10^2 + 24^2 with 10 = 10 and 2*0 + 10 - 10 = 0^3.
a(1832) = 1 since 1832 = 4^2 + 30^2 + 30^2 + 4^2 with 30 = 30 and 2*4 + 30 - 30 = 2^3.
a(2976) = 1 since 2976 = 20^2 + 16^2 + 48^2 + 4^2 with 16 < 48 and 2*20 + 16 - 48 = 2^3.
MATHEMATICA
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]
CQ[n_]:=CQ[n]=IntegerQ[n^(1/3)]
Do[r=0; Do[If[SQ[n-x^2-y^2-z^2]&&CQ[2x+y-z], r=r+1], {x, 0, n^(1/2)}, {y, 0, Sqrt[(n-x^2)/2]}, {z, y, Min[2x+y, Sqrt[n-x^2-y^2]]}]; Print[n, " ", r]; Continue, {n, 0, 80}]
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, May 22 2016
STATUS
approved