The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A273568 Number of ordered ways to write n as w^2 + x^2 + y^2 + z^2 with w + x + 2*y - 4*z twice a nonnegative cube, where w is an integer and x,y,z are nonnegative integers. 7
 1, 1, 2, 1, 3, 2, 2, 2, 2, 4, 3, 3, 4, 1, 2, 2, 1, 4, 6, 2, 4, 5, 3, 5, 5, 4, 1, 4, 5, 3, 3, 3, 1, 5, 4, 4, 4, 6, 8, 5, 1, 5, 4, 3, 13, 9, 2, 6, 2, 4, 7, 9, 8, 7, 8, 5, 6, 2, 4, 5, 7, 9, 11, 5, 2, 5, 10, 6, 12, 9, 4 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Conjecture: a(n) > 0 for all n = 0,1,2,.... For more conjectural refinements of Lagrange's four-square theorem, see the author's preprint arXiv:1604.06723. LINKS Zhi-Wei Sun, Table of n, a(n) for n = 0..10000 Zhi-Wei Sun, Refining Lagrange's four-square theorem, arXiv:1604.06723 [math.GM], 2016. EXAMPLE a(1) = 1 since 1 = 0^2 + 0^2 + 1^2 + 0^2 with 0 + 0 + 2*1 - 4*0 = 2*1^3. a(3) = 1 since 3 = (-1)^2 + 1^2 + 1^2 + 0^2 with (-1) + 1 + 2*1 - 4*0 = 2*1^3. a(13) = 1 since 13 = (-2)^2 + 2^2 + 2^2 + 1^2 with (-2) + 2 + 2*2 - 4*1 = 2*0^3. a(16) = 1 since 16 = 2^2 + 2^2 + 2^2 + 2^2 with 2 + 2 + 2*2 - 4*2 = 2*0^3. a(26) = 1 since 26 = 3^2 + 3^2 + 2^2 + 2^2 with 3 + 3 + 2*2 - 4*2 = 2*1^3. a(32) = 1 since 32 = (-4)^2 + 4^2 + 0^2 + 0^2 with (-4) + 4 + 2*0 - 4*0 = 2*0^3. a(40) = 1 since 40 = (-2)^2 + 4^2 + 4^2 + 2^2 with (-2) + 4 + 2*4 - 4*2 = 2*1^3. a(218) = 1 since 218 = (-6)^2 + 6^2 + 11^2 + 5^2 with (-6) + 6 + 2*11 - 4*5 = 2*1^3. a(416) = 1 since 416 = (-4)^2 + 20^2 + 0^2 + 0^2 with (-4) + 20 + 2*0 - 4*0 = 2*2^3. a(544) = 1 since 544 = (-4)^2 + 20^2 + 8^2 + 8^2 with (-4) + 20 + 2*8 - 4*8 = 2*0^3. a(800) = 1 since 800 = (-20)^2 + 20^2 + 0^2 + 0^2 with (-20) + 20 + 2*0 - 4*0 = 2*0^3. a(1184) = 1 since 1184 = (-28)^2 + 12^2 + 16^2 + 0^2 with (-28) + 12 + 2*16 - 4*0 = 2*2^3. a(2080) = 1 since 2080 = (-20)^2 + 20^2 + 32^2 + 16^2 with (-20) + 20 + 2*32 - 4*16 = 2*0^3. a(6304) = 1 since 6304 = (-36)^2 + 36^2 + 56^2 + 24^2 with (-36) + 36 + 2*56 - 4*24 = 2*2^3. MATHEMATICA SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]] CQ[n_]:=CQ[n]=n>=0&&IntegerQ[n^(1/3)] Do[r=0; Do[If[SQ[n-x^2-y^2-z^2]&&CQ[(x+2y-4z+(-1)^k*Sqrt[n-x^2-y^2-z^2])/2], r=r+1], {x, 0, Sqrt[n]}, {y, 0, Sqrt[n-x^2]}, {z, 0, Sqrt[n-x^2-y^2]}, {k, 0, Min[1, n-x^2-y^2-z^2]}]; Print[n, " ", r]; Continue, {n, 0, 70}] CROSSREFS Cf. A000118, A000290, A000578, A260625, A261876, A262357, A267121, A268197, A268507, A269400, A270073, A270969, A271510, A271513, A271518, A271608, A271665, A271714, A271721, A271724, A271775, A271778, A271824, A272084, A272332, A272351, A272620, A272888, A272977, A273021, A273107, A273108, A273110, A273134, A273278, A273294, A273302, A273404, A273429, A273432, A273458. Sequence in context: A347240 A308751 A057514 * A140720 A033559 A279027 Adjacent sequences:  A273565 A273566 A273567 * A273569 A273570 A273571 KEYWORD nonn AUTHOR Zhi-Wei Sun, May 25 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 4 02:40 EST 2021. Contains 349469 sequences. (Running on oeis4.)