Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #62 Dec 30 2024 17:22:05
%S 1,5,5,3,7,7,3,9,7,4,0,3,0,0,3,7,3,0,7,3,4,4,1,5,8,9,5,3,0,6,3,1,4,6,
%T 9,4,8,1,6,4,5,8,3,4,9,9,4,1,0,3,0,7,8,3,6,3,3,2,6,7,1,1,4,8,3,3,3,6,
%U 7,5,2,5,6,7,8,8,7,3,3,1,0,2,7,2,7,9
%N Decimal expansion of sqrt(sqrt(2) + 1).
%C A quartic integer with minimal polynomial x^4 - 2*x^2 - 1. - _Charles R Greathouse IV_, Dec 01 2016
%C Suppose f(n) has the recurrence f(2*n) = f(2*n - 1) + f(2*n - 2) and f(2*n + 1) = f(2*n) + f(2*n - 2), where f(0) and f(1) are not both 0. Then, lim_{n -> oo} f(n)^(1/n) is this constant.
%C Apart from the first digit, the same as A190283. - _R. J. Mathar_, Dec 09 2016
%C Imaginary part of sqrt(1 + i)^3, where i is the imaginary unit such that i^2 = -1. See A154747 for real part. - _Alonso del Arte_, Sep 09 2019
%D Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 7.4, p. 466.
%H G. C. Greubel, <a href="/A278928/b278928.txt">Table of n, a(n) for n = 1..10000</a>
%H <a href="/index/Al#algebraic_04">Index entries for algebraic numbers, degree 4</a>.
%F Equals 1/A154747.
%F Limit_{n -> oo} A002965(n)^(1/n).
%F From _Peter Bala_, Jul 01 2024: (Start)
%F This constant occurs in the evaluation of Integral_{x = 0..Pi/2} 1/(1 + sin^4(x)) dx = Pi/4 * sqrt(sqrt(2) + 1).
%F Equals 2*Sum_{n >= 0} (-1/16)^n * binomial(4*n, 2*n) (a slowly converging series). (End)
%F Equals 2^(3/4)*cos(Pi/8). - _Vaclav Kotesovec_, Jul 01 2024
%F Equals Product_{k>=0} coth(Pi/4 + k*Pi/2). - _Antonio Graciá Llorente_, Dec 19 2024
%F Equals sqrt(A014176) = 1/A154747 = exp(A245592). - _Hugo Pfoertner_, Dec 19 2024
%e 1.553773974030037307344158953063146948164583499410307836332671...
%p Digits:=100: evalf(sqrt(sqrt(2)+1)); # _Wesley Ivan Hurt_, Dec 01 2016
%t RealDigits[Sqrt[Sqrt[2] + 1], 10, 100][[1]] (* _Wesley Ivan Hurt_, Dec 01 2016 *)
%o (PARI) sqrt(sqrt(2)+1) \\ _Charles R Greathouse IV_, Dec 01 2016
%o (PARI) polrootsreal(x^4 - 2*x^2 - 1)[2] \\ _Charles R Greathouse IV_, Dec 01 2016
%o (Magma) Sqrt(1+Sqrt(2)); // _G. C. Greubel_, Apr 14 2018
%Y Cf. A002965, A014176, A154747, A190283, A245592.
%Y Cf. A309948 and A309949 for real and imaginary parts of sqrt(1 + i).
%K nonn,cons,changed
%O 1,2
%A _Bobby Jacobs_, Dec 01 2016