login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A360609
E.g.f. satisfies A(x) = exp(x*A(x)^3) / (1-x).
3
1, 2, 17, 313, 9053, 357941, 17975605, 1095604133, 78570635225, 6482415935449, 604889610870881, 62989604872166897, 7241672622495518773, 911048848278644776949, 124497704904842673086285, 18364053909500922198147421, 2908158473059042016441887025
OFFSET
0,2
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
E.g.f.: (LambertW( -3*x/(1-x)^3 ) / (-3*x))^(1/3).
a(n) ~ 3^(-5/6) * (2^(4/3) + 2*(3 + sqrt(4*exp(1) + 9))^(1/3) * exp(-2/3) - 2^(2/3) * (3 + sqrt(4*exp(1) + 9))^(2/3) * exp(-1/3))^(1/6) * 2^(1/3) * (3 + sqrt(4*exp(1) + 9))^(4/9) * sqrt(4 - 2^(4/3) * (3 + sqrt(4*exp(1) + 9))^(2/3) * exp(-1/3) + 3*2^(2/3) * exp(-2/3) * (3 + sqrt(4*exp(1) + 9))^(1/3)) * n^(n-1) * (12 + 4*sqrt(4*exp(1) + 9))^(n/3) / (exp(7/18 + 5*n/3) * (2 - 2^(1/3) * (3 + sqrt(4*exp(1) + 9))^(2/3) * exp(-1/3) + exp(-2/3) * (12 + 4*sqrt(4*exp(1) + 9))^(1/3))^n * ((3 + sqrt(4*exp(1) + 9))^(2/3) * exp(-1/3) - 2^(2/3))^(3/2) * sqrt(2^(1/3) * (3 + sqrt(4*exp(1) + 9))^(2/3) * exp(-1/3) - 2)). - Vaclav Kotesovec, Mar 06 2023
a(n) = n! * Sum_{k=0..n} (3*k+1)^(k-1) * binomial(n+2*k,n-k)/k!. - Seiichi Manyama, Mar 09 2024
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace((lambertw(-3*x/(1-x)^3)/(-3*x))^(1/3)))
CROSSREFS
Cf. A370876.
Sequence in context: A090306 A304857 A007785 * A201785 A368488 A204249
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 05 2023
STATUS
approved