login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A360612
Number of binary operators defined on the finite chain L_n={0,1,...n}, C:L_n^2-> L_n, which are increasing in each argument, and satisfy the boundary conditions C(0,n)=C(n,0)=0 and C(n,n)=n.
9
1, 14, 805, 208152, 250409016, 1423422089804, 38533696399916432, 4988815527667401921920, 3096067500138473517778378240, 9222307552079662925642825622240000, 131945758198070262889738914466064452265625, 9070830675953705403006049148134626173379375000000
OFFSET
1,2
LINKS
M. Munar, S. Massanet and D. Ruiz-Aguilera, On the cardinality of some families of discrete connectives, Information Sciences, Volume 621, 2023, 708-728.
FORMULA
a(n) = Product_{i=1..n} Product_{j=1..n} Product_{k=1..n} (i+j+k-1)/(i+j+k-2) - Product_{i=1..n} Product_{j=1..n} Product_{k=1..n-1} (i+j+k-1)/(i+j+k-2).
a(n) = A008793(n+1) - A071095(n). - Vaclav Kotesovec, Nov 18 2023
MATHEMATICA
Table[Product[Product[Product[(i + j + k - 1)/(i + j + k - 2), {k, 1, n}], {j, 1, n}], {i, 1, n}] - Product[Product[Product[(i + j + k - 1)/(i + j + k - 2), {k, 1, n - 1}], {j, 1, n}], {i, 1, n}], {n, 1, 15}]
CROSSREFS
Sequence in context: A210817 A042519 A050983 * A183576 A002429 A064345
KEYWORD
nonn
AUTHOR
Marc Munar, Feb 14 2023
STATUS
approved