login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A071095
Number of ways to tile hexagon of edges n, n+1, n+1, n, n+1, n+1 with diamonds of side 1.
4
1, 6, 175, 24696, 16818516, 55197331332, 872299918503728, 66345156372852988800, 24277282058281388285162560, 42730166102274086598901662210000, 361690697335823816369045433734882109375, 14721491647169381835282394824891766183125000000, 2880942480871157389699990094736740229925045312500000000
OFFSET
0,2
REFERENCES
J. Propp, Enumeration of matchings: problems and progress, pp. 255-291 in L. J. Billera et al., eds, New Perspectives in Algebraic Combinatorics, Cambridge, 1999 (see page 261).
LINKS
J. Propp, Updated article
J. Propp, Enumeration of matchings: problems and progress, in L. J. Billera et al. (eds.), New Perspectives in Algebraic Combinatorics
FORMULA
a(n) = Product_{i=0..a-1} Product_{j=0..b-1} Product_{k=0..c-1} (i+j+k+2)/(i+j+k+1) with a=n, b=c=n+1.
a(n) ~ exp(1/12) * 3^(9*n^2/2 + 6*n + 23/12) / (A * n^(1/12) * 2^(6*n^2 + 8*n + 11/4)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Apr 26 2015
a(n) = (-1)^floor(n/2)*det(M(n)) where M(n) is the n X n matrix with m(i,j) = binomial(2*n+i+j,i+j). - Benoit Cloitre, Oct 22 2022
MATHEMATICA
Table[Product[(i+j+k+2)/(i+j+k+1), {i, 0, n-1}, {j, 0, n}, {k, 0, n}], {n, 0, 15}] (* Vaclav Kotesovec, Apr 26 2015 *)
PROG
(PARI) a(n) = prod(i=0, n-1, prod(j=0, n, prod(k=0, n, (i+j+k+2)/(i+j+k+1)))) \\ Michel Marcus, May 20 2013
CROSSREFS
Sequence in context: A233225 A055165 A318538 * A134632 A024277 A012177
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, May 28 2002
STATUS
approved