login
A134632
5*n^5 + 3*n^3 - 2*n^2. Coefficients and exponents are the prime numbers in decreasing order.
1
0, 6, 176, 1278, 5280, 15950, 39456, 84966, 165248, 297270, 502800, 809006, 1249056, 1862718, 2696960, 3806550, 5254656, 7113446, 9464688, 12400350, 16023200, 20447406, 25799136, 32217158, 39853440, 48873750, 59458256, 71802126, 86116128, 102627230, 121579200, 143233206, 167868416, 195782598, 227292720
OFFSET
0,2
LINKS
FORMULA
a(n) = 5*n^5 + 3*n^3 - 2*n^2.
G.f.: 2x*(3+70x+156x^2+66x^3+5x^4)/(1-x)^6. - R. J. Mathar, Nov 14 2007
EXAMPLE
a(4)=5280 because 4^5=1024, 5*1024=5120, 4^3=64, 3*64=192, 4^2=16, 2*16=32 and we can write 5120+192-32=5280.
MAPLE
A134632:=n->5*n^5 + 3*n^3 - 2*n^2; seq(A134632(n), n=0..50); # Wesley Ivan Hurt, May 21 2014
MATHEMATICA
CoefficientList[Series[2 x (3 + 70 x + 156 x^2 + 66 x^3 + 5 x^4)/(1 - x)^6, {x, 0, 50}], x] (* Vincenzo Librandi, May 21 2014 *)
PROG
(Magma)[5*n^5+3*n^3-2*n^2: n in [0..50]]; // Vincenzo Librandi, Dec 14 2010
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Omar E. Pol, Nov 04 2007
EXTENSIONS
More terms from Vincenzo Librandi, Dec 14 2010
STATUS
approved