login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A134630
a(n) = 5*n^5 - 3*n^3 - 2*n^2.
1
0, 0, 128, 1116, 4896, 15200, 38160, 82908, 162176, 292896, 496800, 801020, 1238688, 1849536, 2680496, 3786300, 5230080, 7083968, 9429696, 12359196, 15975200, 20391840, 25735248, 32144156, 39770496, 48780000, 59352800, 71684028, 85984416, 102480896, 121417200, 143054460, 167671808, 195566976, 227056896
OFFSET
0,3
COMMENTS
Coefficients and exponents are the first three prime numbers in decreasing order.
LINKS
FORMULA
a(n) = 5*n^5 - 3*n^3 - 2*n^2.
G.f.: 4*x^2*(32+87*x+30*x^2+x^3)/(-1+x)^6. - R. J. Mathar, Nov 14 2007
a(0)=0, a(1)=0, a(2)=128, a(3)=1116, a(4)=4896, a(5)=15200, a(n)= 6*a(n-1)- 15*a(n-2)+ 20*a(n-3)-15*a(n-4)+6*a(n-5)-a(n-6). - Harvey P. Dale, Jun 01 2014
EXAMPLE
a(4)=4896 because 4^5=1024, 5*1024=5120, 4^3=64, 3*64=192, 4^2=16, 2*16=32 and we can write 5120-192-32=4896.
MAPLE
A134630:=n->5*n^5 - 3*n^3 - 2*n^2; seq(A134630(n), n=0..50); # Wesley Ivan Hurt, May 21 2014
MATHEMATICA
CoefficientList[Series[4 x^2 (32 + 87 x + 30 x^2 + x^3)/(-1 + x)^6, {x, 0, 50}], x] (* Vincenzo Librandi, May 21 2014 *)
Table[5n^5-3n^3-2n^2, {n, 0, 40}] (* or *) LinearRecurrence[ {6, -15, 20, -15, 6, -1}, {0, 0, 128, 1116, 4896, 15200}, 40] (* Harvey P. Dale, Jun 01 2014 *)
PROG
(Magma)[5*n^5-3*n^3 -2*n^2: n in [0..50]]; // Vincenzo Librandi, Dec 14 2010
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Omar E. Pol, Nov 04 2007
EXTENSIONS
More terms from Vincenzo Librandi, Dec 14 2010
STATUS
approved