OFFSET
0,3
COMMENTS
Coefficients and exponents are the first three prime numbers in decreasing order.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (6, -15, 20, -15, 6, -1).
FORMULA
a(n) = 5*n^5 - 3*n^3 - 2*n^2.
G.f.: 4*x^2*(32+87*x+30*x^2+x^3)/(-1+x)^6. - R. J. Mathar, Nov 14 2007
a(0)=0, a(1)=0, a(2)=128, a(3)=1116, a(4)=4896, a(5)=15200, a(n)= 6*a(n-1)- 15*a(n-2)+ 20*a(n-3)-15*a(n-4)+6*a(n-5)-a(n-6). - Harvey P. Dale, Jun 01 2014
EXAMPLE
a(4)=4896 because 4^5=1024, 5*1024=5120, 4^3=64, 3*64=192, 4^2=16, 2*16=32 and we can write 5120-192-32=4896.
MAPLE
MATHEMATICA
CoefficientList[Series[4 x^2 (32 + 87 x + 30 x^2 + x^3)/(-1 + x)^6, {x, 0, 50}], x] (* Vincenzo Librandi, May 21 2014 *)
Table[5n^5-3n^3-2n^2, {n, 0, 40}] (* or *) LinearRecurrence[ {6, -15, 20, -15, 6, -1}, {0, 0, 128, 1116, 4896, 15200}, 40] (* Harvey P. Dale, Jun 01 2014 *)
PROG
(Magma)[5*n^5-3*n^3 -2*n^2: n in [0..50]]; // Vincenzo Librandi, Dec 14 2010
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Omar E. Pol, Nov 04 2007
EXTENSIONS
More terms from Vincenzo Librandi, Dec 14 2010
STATUS
approved