login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A133070
a(n) = n^5 - n^3 - n^2.
6
0, -1, 20, 207, 944, 2975, 7524, 16415, 32192, 58239, 98900, 159599, 246960, 368927, 534884, 755775, 1044224, 1414655, 1883412, 2468879, 3191600, 4074399, 5142500, 6423647, 7948224, 9749375, 11863124, 14328495, 17187632, 20485919, 24272100, 28598399, 33520640, 39098367, 45394964
OFFSET
0,3
COMMENTS
Exponents are prime numbers in decreasing order.
FORMULA
a(n) = n^5 - n^3 - n^2.
G.f.: x*(-1 +26*x + 72*x^2 + 22*x^3 + x^4)/(1-x)^6. - R. J. Mathar, Nov 14 2007
a(n) = 6*a(n-1) -15*a(n-2) +20*a(n-3) -15*a(n-4) +6*a(n-5) -a(n-6), with a(0)=0, a(1)=-1, a(2)=20, a(3)=207, a(4)=944, a(5)=2975. - Harvey P. Dale, Jul 23 2011
EXAMPLE
a(7)=16415 because 7^5=16807, 7^3=343, 7^2=49 and we can write 16807-343-49=16415.
MATHEMATICA
Table[n^5-n^3-n^2, {n, 0, 40}] (* or *) LinearRecurrence[ {6, -15, 20, -15, 6, -1}, {0, -1, 20, 207, 944, 2975}, 41] (* Harvey P. Dale, Jul 23 2011 *)
PROG
(Magma) [n^5-n^3-n^2: n in [0..50]]; // Vincenzo Librandi, Dec 15 2010
(PARI) for(n=0, 50, print1(n^5 - n^3 - n^2, ", ")) \\ G. C. Greubel, Oct 20 2017
KEYWORD
sign,easy
AUTHOR
Omar E. Pol, Nov 01 2007
EXTENSIONS
More terms from Vincenzo Librandi, Dec 15 2010
STATUS
approved