login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A133068
Number of surjections from an n-element set to an eight-element set.
3
40320, 1451520, 30240000, 479001600, 6411968640, 76592355840, 843184742400, 8734434508800, 86355926616960, 823172919528960, 7621934141203200, 68937160460313600, 611692004959217280, 5342844138794426880, 46061530905262118400, 392795626402384128000
OFFSET
8,1
LINKS
Index entries for linear recurrences with constant coefficients, signature (36,-546,4536,-22449,67284,-118124,109584,-40320).
FORMULA
a(n) = Sum_{k=1..8} ((-1)^(8-k)*binomial(8,k)*k^n).
a(n) = A049434(n) * 8!. - Max Alekseyev, Nov 13 2009
G.f.: 40320*x^8/((x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)*(6*x-1)*(7*x-1)*(8*x-1)). - Colin Barker, Oct 25 2012
E.g.f.: (exp(x) - 1)^8. - Ilya Gutkovskiy, Jun 19 2018
MATHEMATICA
CoefficientList[Series[40320*x^8/((x - 1)*(2*x - 1)*(3*x - 1)*(4*x - 1)*(5*x - 1)*(6*x - 1)*(7*x - 1)*(8*x - 1)), {x, 0, 50}], x] (* G. C. Greubel, Oct 20 2017 *)
Table[Sum[(-1)^(8 - k)*Binomial[8, k]*k^n, {k, 1, 8}], {n, 8, 20}] (* G. C. Greubel, Oct 21 2017 *)
PROG
(PARI) x='x+O('x^50); Vec(40320*x^8/((x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)*(6*x-1)*(7*x-1)*(8*x-1))) \\ G. C. Greubel, Oct 20 2017
(Magma) [&+[(-1)^(8-k)*Binomial(8, k)*k^n: k in [1..n]]: n in [8..25]]; // Vincenzo Librandi, Oct 21 2017
CROSSREFS
Column k=8 of A019538 and A131689.
Sequence in context: A061123 A029576 A179966 * A254081 A228911 A213878
KEYWORD
nonn,easy
AUTHOR
Mohamed Bouhamida, Dec 16 2007
EXTENSIONS
Edited by N. J. A. Sloane, Jul 12 2008 at the suggestion of R. J. Mathar
More terms from Max Alekseyev, Nov 13 2009
STATUS
approved