login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A133068 Number of surjections from an n-element set to an eight-element set. 1
40320, 1451520, 30240000, 479001600, 6411968640, 76592355840, 843184742400, 8734434508800, 86355926616960, 823172919528960, 7621934141203200, 68937160460313600, 611692004959217280, 5342844138794426880, 46061530905262118400, 392795626402384128000 (list; graph; refs; listen; history; text; internal format)
OFFSET
8,1
LINKS
Index entries for linear recurrences with constant coefficients, signature (36,-546,4536,-22449,67284,-118124,109584,-40320).
FORMULA
a(n) = Sum_{k=1..8} ((-1)^(8-k)*C(8,k)*k^n) and n >= 8.
a(n) = A049434(n) * 8!. - Max Alekseyev, Nov 13 2009
G.f.: 40320*x^8/((x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)*(6*x-1)*(7*x-1)*(8*x-1)). - Colin Barker, Oct 25 2012
E.g.f.: (exp(x) - 1)^8. - Ilya Gutkovskiy, Jun 19 2018
MATHEMATICA
CoefficientList[Series[40320*x^8/((x - 1)*(2*x - 1)*(3*x - 1)*(4*x - 1)*(5*x - 1)*(6*x - 1)*(7*x - 1)*(8*x - 1)), {x, 0, 50}], x] (* G. C. Greubel, Oct 20 2017 *)
Table[Sum[(-1)^(8 - k)*Binomial[8, k]*k^n, {k, 1, 8}], {n, 8, 20}] (* G. C. Greubel, Oct 21 2017 *)
PROG
(PARI) x='x+O('x^50); Vec(40320*x^8/((x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)*(6*x-1)*(7*x-1)*(8*x-1))) \\ G. C. Greubel, Oct 20 2017
(Magma) [&+[(-1)^(8-k)*Binomial(8, k)*k^n: k in [1..n]]: n in [8..25]]; // Vincenzo Librandi, Oct 21 2017
CROSSREFS
Sequence in context: A061123 A029576 A179966 * A254081 A228911 A213878
KEYWORD
nonn,easy
AUTHOR
Mohamed Bouhamida, Dec 16 2007; Dec 21 2007
EXTENSIONS
Edited by N. J. A. Sloane, Jul 12 2008 at the suggestion of R. J. Mathar
More terms from Max Alekseyev, Nov 13 2009
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 6 10:50 EDT 2023. Contains 363142 sequences. (Running on oeis4.)