login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A135179
p^5 - p^3 - p^2. Exponents are the prime numbers in decreasing order and p is the n-th prime.
1
20, 207, 2975, 16415, 159599, 368927, 1414655, 2468879, 6423647, 20485919, 28598399, 69291935, 115785599, 146927087, 229238975, 418043807, 714715439, 844365599, 1349819855, 1803866399, 2072677247, 3076557119, 3938461967, 5583346559, 8586418175, 10509059999, 11591637407, 14024280815, 15384932639
OFFSET
1,1
LINKS
FORMULA
p=A000040(n): a(n)= p^5 - p^3 - p^2 = A050997(n) - A030078(n) - A001248(n).
EXAMPLE
a(4)=16415 because the 4th prime number is 7, 7^5=16807, 7^3=343, 7^2=49 and 16807-343-49=16415.
MATHEMATICA
Table[p^5 - p^3 - p^2, {p, Prime[Range[20]]}] (* Vincenzo Librandi, May 24 2014 *)
PROG
(Magma)[p^5-p^3-p^2: p in PrimesUpTo(200)]; // Vincenzo Librandi, Dec 14 2010
CROSSREFS
Sequence in context: A325474 A364651 A133070 * A220939 A231059 A161513
KEYWORD
nonn,easy
AUTHOR
Omar E. Pol, Nov 25 2007
EXTENSIONS
More terms from Vincenzo Librandi, Dec 14 2010
STATUS
approved