login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A135178
a(n) = p^3 + p^2 where p = prime(n).
3
12, 36, 150, 392, 1452, 2366, 5202, 7220, 12696, 25230, 30752, 52022, 70602, 81356, 106032, 151686, 208860, 230702, 305252, 362952, 394346, 499280, 578676, 712890, 922082, 1040502, 1103336, 1236492, 1306910, 1455666, 2064512, 2265252
OFFSET
1,1
LINKS
FORMULA
Product_{n>=1} (1 - 1/a(n)) = A065465. - Amiram Eldar, Jan 23 2021
EXAMPLE
a(4)=392 because the 4th prime number is 7, 7^3=343, 7^2=49 and 343+49=392.
MAPLE
A135178:= n -> map(p -> p^(2)+p^(3), ithprime(n)):
seq(A135178(n), n=1..32); # Jani Melik, Jan 25 2010
MATHEMATICA
Table[p=Prime[n]; p^2+p^3, {n, 100}] (* Vladimir Joseph Stephan Orlovsky, Mar 21 2011*)
#^3+#^2&/@Prime[Range[40]] (* Harvey P. Dale, May 07 2023 *)
PROG
(Magma)[ p^3 + p^2: p in PrimesUpTo(200)]; // Vincenzo Librandi, Dec 14 2010
CROSSREFS
Cf. A000040 (p), A001248 (p^2), A030078 (p^3).
Cf. A065465.
Sequence in context: A270840 A064518 A238923 * A278583 A329859 A216381
KEYWORD
nonn
AUTHOR
Omar E. Pol, Nov 25 2007
STATUS
approved