login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = p^3 + p^2 where p = prime(n).
3

%I #30 May 07 2023 19:04:56

%S 12,36,150,392,1452,2366,5202,7220,12696,25230,30752,52022,70602,

%T 81356,106032,151686,208860,230702,305252,362952,394346,499280,578676,

%U 712890,922082,1040502,1103336,1236492,1306910,1455666,2064512,2265252

%N a(n) = p^3 + p^2 where p = prime(n).

%H Ivan Panchenko, <a href="/A135178/b135178.txt">Table of n, a(n) for n = 1..1000</a>

%F Product_{n>=1} (1 - 1/a(n)) = A065465. - _Amiram Eldar_, Jan 23 2021

%e a(4)=392 because the 4th prime number is 7, 7^3=343, 7^2=49 and 343+49=392.

%p A135178:= n -> map(p -> p^(2)+p^(3), ithprime(n)):

%p seq(A135178(n), n=1..32); # _Jani Melik_, Jan 25 2010

%t Table[p=Prime[n];p^2+p^3,{n,100}] (* _Vladimir Joseph Stephan Orlovsky_, Mar 21 2011*)

%t #^3+#^2&/@Prime[Range[40]] (* _Harvey P. Dale_, May 07 2023 *)

%o (Magma)[ p^3 + p^2: p in PrimesUpTo(200)]; // _Vincenzo Librandi_, Dec 14 2010

%Y Cf. A000040 (p), A001248 (p^2), A030078 (p^3).

%Y Cf. A065465.

%K nonn

%O 1,1

%A _Omar E. Pol_, Nov 25 2007