login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A071096
Number of ways to tile hexagon of edges n, n+1, n+2, n, n+1, n+2 with diamonds of side 1.
0
1, 10, 490, 116424, 133613766, 739309710568, 19702998159210080, 2527580342020127455360, 1560172391098377453031770400, 4632518859090968506120863642225000, 66153724447703043353053979949899667187500, 4542776083800437392420665771479758969781250000000, 1499928882906010042230116408158354282455601808812500000000
OFFSET
0,2
REFERENCES
J. Propp, Enumeration of matchings: problems and progress, pp. 255-291 in L. J. Billera et al., eds, New Perspectives in Algebraic Combinatorics, Cambridge, 1999 (see page 261).
LINKS
J. Propp, Updated article
J. Propp, Enumeration of matchings: problems and progress, in L. J. Billera et al. (eds.), New Perspectives in Algebraic Combinatorics
FORMULA
Product_{i=0..a-1} Product_{j=0..b-1} Product_{k=0..c-1} (i+j+k+2)/(i+j+k+1) with a=n, b=n+1, c=n+2.
a(n) = (-1)^floor((n+1)/2)*det(M(n+1)) where M(n) is the n X n matrix m(i, j)=C(2n, i+j), with i and j ranging from 1 to n. - Benoit Cloitre, Jan 31 2003
a(n) = (1/2)*Product[Product[Product[(i+j+k-1)/(i+j+k-2),{i,1,n+1}],{j,1,n+1}],{k,1,n+1}]. a(n) = A008793(n+1)/2. - Alexander Adamchuk, Jul 10 2006
a(n) ~ exp(1/12) * 3^(9*n^2/2 + 9*n + 53/12) / (A * n^(1/12) * 2^(6*n^2 + 12*n + 27/4)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Apr 26 2015
MATHEMATICA
Table[Product[Product[Product[(i+j+k-1)/(i+j+k-2), {i, 1, n+1}], {j, 1, n+1}], {k, 1, n+1}], {n, 0, 10}]/2 (* Alexander Adamchuk, Jul 10 2006 *)
PROG
(PARI) {a(n) = abs(matdet(matrix(n+1, n+1, i, j, binomial(2*(n+1), i+j))))}; \\ Shifted by Georg Fischer, Jun 19 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, May 28 2002
STATUS
approved