login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of ways to tile hexagon of edges n, n+1, n+2, n, n+1, n+2 with diamonds of side 1.
0

%I #31 Jun 20 2022 04:45:48

%S 1,10,490,116424,133613766,739309710568,19702998159210080,

%T 2527580342020127455360,1560172391098377453031770400,

%U 4632518859090968506120863642225000,66153724447703043353053979949899667187500,4542776083800437392420665771479758969781250000000,1499928882906010042230116408158354282455601808812500000000

%N Number of ways to tile hexagon of edges n, n+1, n+2, n, n+1, n+2 with diamonds of side 1.

%D J. Propp, Enumeration of matchings: problems and progress, pp. 255-291 in L. J. Billera et al., eds, New Perspectives in Algebraic Combinatorics, Cambridge, 1999 (see page 261).

%H J. Propp, <a href="http://faculty.uml.edu/jpropp/update.pdf">Updated article</a>

%H J. Propp, Enumeration of matchings: problems and progress, in L. J. Billera et al. (eds.), <a href="http://www.msri.org/publications/books/Book38/contents.html">New Perspectives in Algebraic Combinatorics</a>

%F Product_{i=0..a-1} Product_{j=0..b-1} Product_{k=0..c-1} (i+j+k+2)/(i+j+k+1) with a=n, b=n+1, c=n+2.

%F a(n) = (-1)^floor((n+1)/2)*det(M(n+1)) where M(n) is the n X n matrix m(i, j)=C(2n, i+j), with i and j ranging from 1 to n. - _Benoit Cloitre_, Jan 31 2003

%F a(n) = (1/2)*Product[Product[Product[(i+j+k-1)/(i+j+k-2),{i,1,n+1}],{j,1,n+1}],{k,1,n+1}]. a(n) = A008793(n+1)/2. - _Alexander Adamchuk_, Jul 10 2006

%F a(n) ~ exp(1/12) * 3^(9*n^2/2 + 9*n + 53/12) / (A * n^(1/12) * 2^(6*n^2 + 12*n + 27/4)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant. - _Vaclav Kotesovec_, Apr 26 2015

%t Table[Product[Product[Product[(i+j+k-1)/(i+j+k-2),{i,1,n+1}],{j,1,n+1}],{k,1,n+1}],{n,0,10}]/2 (* _Alexander Adamchuk_, Jul 10 2006 *)

%o (PARI) {a(n) = abs(matdet(matrix(n+1, n+1, i, j, binomial(2*(n+1), i+j))))}; \\ Shifted by _Georg Fischer_, Jun 19 2022

%Y Cf. A008793, A071094, A071095.

%K nonn

%O 0,2

%A _N. J. A. Sloane_, May 28 2002