login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of binary operators defined on the finite chain L_n={0,1,...n}, C:L_n^2-> L_n, which are increasing in each argument, and satisfy the boundary conditions C(0,n)=C(n,0)=0 and C(n,n)=n.
9

%I #18 Nov 18 2023 09:34:24

%S 1,14,805,208152,250409016,1423422089804,38533696399916432,

%T 4988815527667401921920,3096067500138473517778378240,

%U 9222307552079662925642825622240000,131945758198070262889738914466064452265625,9070830675953705403006049148134626173379375000000

%N Number of binary operators defined on the finite chain L_n={0,1,...n}, C:L_n^2-> L_n, which are increasing in each argument, and satisfy the boundary conditions C(0,n)=C(n,0)=0 and C(n,n)=n.

%H M. Munar, S. Massanet and D. Ruiz-Aguilera, <a href="https://doi.org/10.1016/j.ins.2022.10.121">On the cardinality of some families of discrete connectives</a>, Information Sciences, Volume 621, 2023, 708-728.

%F a(n) = Product_{i=1..n} Product_{j=1..n} Product_{k=1..n} (i+j+k-1)/(i+j+k-2) - Product_{i=1..n} Product_{j=1..n} Product_{k=1..n-1} (i+j+k-1)/(i+j+k-2).

%F a(n) = A008793(n+1) - A071095(n). - _Vaclav Kotesovec_, Nov 18 2023

%t Table[Product[Product[Product[(i + j + k - 1)/(i + j + k - 2), {k, 1, n}], {j, 1, n}], {i, 1, n}] - Product[Product[Product[(i + j + k - 1)/(i + j + k - 2), {k, 1, n - 1}], {j, 1, n}], {i, 1, n}], {n, 1, 15}]

%Y Cf. A008793, A071095.

%K nonn

%O 1,2

%A _Marc Munar_, Feb 14 2023