login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A368488
a(n) = Sum_{k=0..n} n^k * binomial(k+n-1,k).
2
1, 2, 17, 334, 10417, 442276, 23690809, 1530206742, 115636017473, 10004657077468, 974950612575601, 105653682110368492, 12602144701834193521, 1640558582759557298696, 231448351542446473323113, 35173958220088874039434726, 5728588740444710703061240065
OFFSET
0,2
FORMULA
a(n) = [x^n] 1/((1-x) * (1-n*x)^n).
a(n) ~ 2^(2*n-1) * n^(n - 1/2) / sqrt(Pi). - Vaclav Kotesovec, Dec 27 2023
PROG
(PARI) a(n) = sum(k=0, n, n^k*binomial(k+n-1, k));
CROSSREFS
Main diagonal of A368487.
Sequence in context: A007785 A360609 A201785 * A204249 A242368 A307315
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Dec 26 2023
STATUS
approved