OFFSET
1,4
COMMENTS
LINKS
Clark Kimberling, Antidiagonals n = 1..60, flattened
EXAMPLE
Northwest corner:
0 1 2 3 3 4 4 5 4 5 5
1 0 1 2 2 3 3 4 3 4 4
2 1 0 1 1 2 2 3 2 3 3
3 2 1 0 2 3 1 2 3 4 4
3 2 1 2 0 1 3 4 1 2 2
4 3 2 3 1 0 4 5 2 3 1
d(4,6) = d(6,4) = 3 counts the edges in the path 6,3,2,4;
d(46,21) = 6 counts the edges in the path 46,23,22,11,10,20,21.
MATHEMATICA
f[{x_, y_}] := If[EvenQ[x], {y, x/2}, {x - 1, y}];
g[{x_, y_}] := Drop[FixedPointList[f, {x, y}], -1];
s[n_] := Reverse[Select[Sort[Flatten[Select[g[{n, 0}], #[[2]] == 0 &]]], # > 0 &]];
m[h_, k_] := Max[Intersection[s[h], s[k]]];
j[h_, k_] := Join[Select[s[h], # >= m[h, k] &], Reverse[Select[s[k], # > m[h, k] &]]];
d[h_, k_] := If[k*h == 0, Length[j[h, k]], -1 + Length[j[h, k]]];
TableForm[Table[d[h, k], {h, 0, 16}, {k, 0, 16}]] (* A257570 array *)
Flatten[Table[d[h - k, k], {h, 0, 20}, {k, 0, h}] (* A257570 sequence *)]
CROSSREFS
KEYWORD
AUTHOR
Clark Kimberling, May 01 2015
STATUS
approved