

A144464


Triangle T(n,m) read by rows: T(n,m) = 2^min(m,nm).


8



1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 4, 2, 1, 1, 2, 4, 4, 2, 1, 1, 2, 4, 8, 4, 2, 1, 1, 2, 4, 8, 8, 4, 2, 1, 1, 2, 4, 8, 16, 8, 4, 2, 1, 1, 2, 4, 8, 16, 16, 8, 4, 2, 1, 1, 2, 4, 8, 16, 32, 16, 8, 4, 2, 1
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,5


LINKS

Table of n, a(n) for n=0..65.


FORMULA

Row sums: sum_{m=0..n} T(n,m) = A027383(n).
T(n,k) = 2^A004197(n,k).  Philippe Deléham, Feb 25 2014


EXAMPLE

The triangle starts in row n=0 as:
{1},
{1, 1},
{1, 2, 1},
{1, 2, 2, 1},
{1, 2, 4, 2, 1},
{1, 2, 4, 4, 2, 1},
{1, 2, 4, 8, 4, 2, 1},
{1, 2, 4, 8, 8, 4, 2, 1},
{1, 2, 4, 8, 16, 8, 4, 2, 1},
{1, 2, 4, 8, 16, 16, 8, 4, 2, 1},
{1, 2, 4, 8, 16, 32, 16, 8, 4, 2, 1}


MATHEMATICA

Clear[f, t]; f[n_, m_] = If[m <= Floor[n/2], m, n  m]; Table[Table[f[n, m], {m, 0, n}], {n, 0, 10}]; Flatten[%]


PROG

(PARI) T(n, m)=1<<min(m, nm) \\ Charles R Greathouse IV, Jan 15 2012


CROSSREFS

Cf. A004197, A152714, A152716, A152717.
Sequence in context: A320748 A320747 A238392 * A138015 A327742 A103444
Adjacent sequences: A144461 A144462 A144463 * A144465 A144466 A144467


KEYWORD

nonn,easy,tabl


AUTHOR

Roger L. Bagula and Gary W. Adamson, Oct 09 2008


EXTENSIONS

Offset corrected by the Associate Editors of the OEIS, Sep 11 2009
Better name by Philippe Deléham, Feb 25 2014


STATUS

approved



