OFFSET
0,5
COMMENTS
Row n contains n+1 terms. Row sums yield A103445.
EXAMPLE
T(6,3) = 4 because the divisors of C(6,3) = 20 are 1,2,4,5,10,20 of which 1,4,5,20 are unitary (i.e. d|20 such that gcd(d,20/d) = 1).
Triangle begins:
1;
1,1;
1,2,1;
1,2,2,1;
1,2,4,2,1;
1,2,4,4,2,1;
MAPLE
with(numtheory):unitdiv:=proc(n) local A, k: A:={}: for k from 1 to tau(n) do if gcd(divisors(n)[k], n/divisors(n)[k])=1 then A:=A union {divisors(n)[k]} else A:=A fi od end: T:=proc(n, k) if k<=n then nops(unitdiv(binomial(n, k))) else 0 fi end: for n from 0 to 13 do seq(T(n, k), k=0..n) od; # yields sequence in triangular form
MATHEMATICA
Table[2^PrimeNu[Binomial[n, k]], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, Jul 22 2024 *)
PROG
(PARI) T(n, k) = 2^omega(binomial(n, k)); \\ Amiram Eldar, Jul 22 2024
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Feb 06 2005
STATUS
approved