login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A103444
Triangle read by rows: T(n,k) is number of unitary divisors of C(n,k), 0<=k<=n.
1
1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 4, 2, 1, 1, 2, 4, 4, 2, 1, 1, 4, 4, 4, 4, 4, 1, 1, 2, 4, 4, 4, 4, 2, 1, 1, 2, 4, 4, 8, 4, 4, 2, 1, 1, 2, 4, 8, 8, 8, 8, 4, 2, 1, 1, 4, 4, 8, 16, 8, 16, 8, 4, 4, 1, 1, 2, 4, 8, 16, 16, 16, 16, 8, 4, 2, 1, 1, 4, 8, 8, 8, 8, 16, 8, 8, 8, 8, 4, 1, 1, 2, 8, 8, 8, 8, 16, 16, 8, 8
OFFSET
0,5
COMMENTS
Row n contains n+1 terms. Row sums yield A103445.
EXAMPLE
T(6,3) = 4 because the divisors of C(6,3) = 20 are 1,2,4,5,10,20 of which 1,4,5,20 are unitary (i.e. d|20 such that gcd(d,20/d) = 1).
Triangle begins:
1;
1,1;
1,2,1;
1,2,2,1;
1,2,4,2,1;
1,2,4,4,2,1;
MAPLE
with(numtheory):unitdiv:=proc(n) local A, k: A:={}: for k from 1 to tau(n) do if gcd(divisors(n)[k], n/divisors(n)[k])=1 then A:=A union {divisors(n)[k]} else A:=A fi od end: T:=proc(n, k) if k<=n then nops(unitdiv(binomial(n, k))) else 0 fi end: for n from 0 to 13 do seq(T(n, k), k=0..n) od; # yields sequence in triangular form
MATHEMATICA
Table[2^PrimeNu[Binomial[n, k]], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, Jul 22 2024 *)
PROG
(PARI) T(n, k) = 2^omega(binomial(n, k)); \\ Amiram Eldar, Jul 22 2024
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Feb 06 2005
STATUS
approved