login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: T(n,k) is number of unitary divisors of C(n,k), 0<=k<=n.
1

%I #9 Jul 22 2024 15:24:11

%S 1,1,1,1,2,1,1,2,2,1,1,2,4,2,1,1,2,4,4,2,1,1,4,4,4,4,4,1,1,2,4,4,4,4,

%T 2,1,1,2,4,4,8,4,4,2,1,1,2,4,8,8,8,8,4,2,1,1,4,4,8,16,8,16,8,4,4,1,1,

%U 2,4,8,16,16,16,16,8,4,2,1,1,4,8,8,8,8,16,8,8,8,8,4,1,1,2,8,8,8,8,16,16,8,8

%N Triangle read by rows: T(n,k) is number of unitary divisors of C(n,k), 0<=k<=n.

%C Row n contains n+1 terms. Row sums yield A103445.

%e T(6,3) = 4 because the divisors of C(6,3) = 20 are 1,2,4,5,10,20 of which 1,4,5,20 are unitary (i.e. d|20 such that gcd(d,20/d) = 1).

%e Triangle begins:

%e 1;

%e 1,1;

%e 1,2,1;

%e 1,2,2,1;

%e 1,2,4,2,1;

%e 1,2,4,4,2,1;

%p with(numtheory):unitdiv:=proc(n) local A, k: A:={}: for k from 1 to tau(n) do if gcd(divisors(n)[k],n/divisors(n)[k])=1 then A:=A union {divisors(n)[k]} else A:=A fi od end: T:=proc(n,k) if k<=n then nops(unitdiv(binomial(n,k))) else 0 fi end: for n from 0 to 13 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form

%t Table[2^PrimeNu[Binomial[n, k]], {n, 0, 10}, {k, 0, n}] // Flatten (* _Amiram Eldar_, Jul 22 2024 *)

%o (PARI) T(n, k) = 2^omega(binomial(n, k)); \\ _Amiram Eldar_, Jul 22 2024

%Y Cf. A007318, A034444, A103445.

%K nonn,tabl

%O 0,5

%A _Emeric Deutsch_, Feb 06 2005