The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A344838 Square array T(n, k), n, k >= 0, read by antidiagonals; T(n, k) = max(n * 2^max(0, w(k)-w(n)), k * 2^max(0, w(n)-w(k))) (where w = A070939). 6
 0, 1, 1, 2, 1, 2, 3, 2, 2, 3, 4, 3, 2, 3, 4, 5, 4, 3, 3, 4, 5, 6, 5, 4, 3, 4, 5, 6, 7, 6, 5, 6, 6, 5, 6, 7, 8, 7, 6, 6, 4, 6, 6, 7, 8, 9, 8, 7, 6, 5, 5, 6, 7, 8, 9, 10, 9, 8, 7, 6, 5, 6, 7, 8, 9, 10, 11, 10, 9, 12, 7, 6, 6, 7, 12, 9, 10, 11, 12, 11, 10, 12, 8, 7, 6, 7, 8, 12, 10, 11, 12 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS In other words, we right pad the binary expansion of the lesser of n and k with zeros (provided it is positive) so that both numbers have the same number of binary digits, and then take the greatest value. LINKS Rémy Sigrist, Table of n, a(n) for n = 0..10010 Rémy Sigrist, Colored representation of the table for n, k < 2^10 FORMULA T(n, k) = T(k, n). T(m, T(n, k)) = T(T(m, n), k). T(n, n) = n. T(n, 0) = n. T(n, 1) = max(1, n). EXAMPLE Array T(n, k) begins: n\k| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ---+---------------------------------------------------------------- 0| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1| 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 2| 2 2 2 3 4 5 6 7 8 9 10 11 12 13 14 15 3| 3 3 3 3 6 6 6 7 12 12 12 12 12 13 14 15 4| 4 4 4 6 4 5 6 7 8 9 10 11 12 13 14 15 5| 5 5 5 6 5 5 6 7 10 10 10 11 12 13 14 15 6| 6 6 6 6 6 6 6 7 12 12 12 12 12 13 14 15 7| 7 7 7 7 7 7 7 7 14 14 14 14 14 14 14 15 8| 8 8 8 12 8 10 12 14 8 9 10 11 12 13 14 15 9| 9 9 9 12 9 10 12 14 9 9 10 11 12 13 14 15 10| 10 10 10 12 10 10 12 14 10 10 10 11 12 13 14 15 11| 11 11 11 12 11 11 12 14 11 11 11 11 12 13 14 15 12| 12 12 12 12 12 12 12 14 12 12 12 12 12 13 14 15 13| 13 13 13 13 13 13 13 14 13 13 13 13 13 13 14 15 14| 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 15 15| 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 PROG (PARI) T(n, k, op=max, w=m->#binary(m)) = { op(n*2^max(0, w(k)-w(n)), k*2^max(0, w(n)-w(k))) } CROSSREFS Cf. A003984, A070939. Cf. A344834 (AND), A344835 (OR), A344836 (XOR), A344837 (min), A344839 (absolute difference). Sequence in context: A341839 A003984 A087061 * A344835 A082860 A342859 Adjacent sequences: A344835 A344836 A344837 * A344839 A344840 A344841 KEYWORD nonn,base,tabl AUTHOR Rémy Sigrist, May 29 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 4 16:17 EDT 2023. Contains 365887 sequences. (Running on oeis4.)