login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Square array T(n, k), n, k >= 0, read by antidiagonals; T(n, k) = max(n * 2^max(0, w(k)-w(n)), k * 2^max(0, w(n)-w(k))) (where w = A070939).
6

%I #9 May 31 2021 02:11:35

%S 0,1,1,2,1,2,3,2,2,3,4,3,2,3,4,5,4,3,3,4,5,6,5,4,3,4,5,6,7,6,5,6,6,5,

%T 6,7,8,7,6,6,4,6,6,7,8,9,8,7,6,5,5,6,7,8,9,10,9,8,7,6,5,6,7,8,9,10,11,

%U 10,9,12,7,6,6,7,12,9,10,11,12,11,10,12,8,7,6,7,8,12,10,11,12

%N Square array T(n, k), n, k >= 0, read by antidiagonals; T(n, k) = max(n * 2^max(0, w(k)-w(n)), k * 2^max(0, w(n)-w(k))) (where w = A070939).

%C In other words, we right pad the binary expansion of the lesser of n and k with zeros (provided it is positive) so that both numbers have the same number of binary digits, and then take the greatest value.

%H Rémy Sigrist, <a href="/A344838/b344838.txt">Table of n, a(n) for n = 0..10010</a>

%H Rémy Sigrist, <a href="/A344838/a344838.png">Colored representation of the table for n, k < 2^10</a>

%F T(n, k) = T(k, n).

%F T(m, T(n, k)) = T(T(m, n), k).

%F T(n, n) = n.

%F T(n, 0) = n.

%F T(n, 1) = max(1, n).

%e Array T(n, k) begins:

%e n\k| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

%e ---+----------------------------------------------------------------

%e 0| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

%e 1| 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

%e 2| 2 2 2 3 4 5 6 7 8 9 10 11 12 13 14 15

%e 3| 3 3 3 3 6 6 6 7 12 12 12 12 12 13 14 15

%e 4| 4 4 4 6 4 5 6 7 8 9 10 11 12 13 14 15

%e 5| 5 5 5 6 5 5 6 7 10 10 10 11 12 13 14 15

%e 6| 6 6 6 6 6 6 6 7 12 12 12 12 12 13 14 15

%e 7| 7 7 7 7 7 7 7 7 14 14 14 14 14 14 14 15

%e 8| 8 8 8 12 8 10 12 14 8 9 10 11 12 13 14 15

%e 9| 9 9 9 12 9 10 12 14 9 9 10 11 12 13 14 15

%e 10| 10 10 10 12 10 10 12 14 10 10 10 11 12 13 14 15

%e 11| 11 11 11 12 11 11 12 14 11 11 11 11 12 13 14 15

%e 12| 12 12 12 12 12 12 12 14 12 12 12 12 12 13 14 15

%e 13| 13 13 13 13 13 13 13 14 13 13 13 13 13 13 14 15

%e 14| 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 15

%e 15| 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15

%o (PARI) T(n,k,op=max,w=m->#binary(m)) = { op(n*2^max(0, w(k)-w(n)), k*2^max(0, w(n)-w(k))) }

%Y Cf. A003984, A070939.

%Y Cf. A344834 (AND), A344835 (OR), A344836 (XOR), A344837 (min), A344839 (absolute difference).

%K nonn,base,tabl

%O 0,4

%A _Rémy Sigrist_, May 29 2021