login
A344834
Square array T(n, k), n, k >= 0, read by antidiagonals; T(n, k) = (n * 2^max(0, w(k)-w(n))) AND (k * 2^max(0, w(n)-w(k))) (where AND denotes the bitwise AND operator and w = A070939).
6
0, 0, 0, 0, 1, 0, 0, 2, 2, 0, 0, 2, 2, 2, 0, 0, 4, 2, 2, 4, 0, 0, 4, 4, 3, 4, 4, 0, 0, 4, 4, 4, 4, 4, 4, 0, 0, 4, 4, 4, 4, 4, 4, 4, 0, 0, 8, 4, 6, 4, 4, 6, 4, 8, 0, 0, 8, 8, 6, 4, 5, 4, 6, 8, 8, 0, 0, 8, 8, 8, 4, 4, 4, 4, 8, 8, 8, 0, 0, 8, 8, 8, 8, 5, 6, 5, 8, 8, 8, 8, 0
OFFSET
0,8
COMMENTS
In other words, we right pad the binary expansion of the lesser of n and k with zeros (provided it is positive) so that both numbers have the same number of binary digits, and then apply the bitwise AND operator.
FORMULA
T(n, k) = T(k, n).
T(m, T(n, k)) = T(T(m, n), k).
T(n, n) = n.
T(n, 0) = n.
T(n, 1) = A053644(n).
EXAMPLE
Array T(n, k) begins:
n\k| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
---+----------------------------------------------------------
0| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1| 0 1 2 2 4 4 4 4 8 8 8 8 8 8 8 8
2| 0 2 2 2 4 4 4 4 8 8 8 8 8 8 8 8
3| 0 2 2 3 4 4 6 6 8 8 8 8 12 12 12 12
4| 0 4 4 4 4 4 4 4 8 8 8 8 8 8 8 8
5| 0 4 4 4 4 5 4 5 8 8 10 10 8 8 10 10
6| 0 4 4 6 4 4 6 6 8 8 8 8 12 12 12 12
7| 0 4 4 6 4 5 6 7 8 8 10 10 12 12 14 14
8| 0 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
9| 0 8 8 8 8 8 8 8 8 9 8 9 8 9 8 9
10| 0 8 8 8 8 10 8 10 8 8 10 10 8 8 10 10
11| 0 8 8 8 8 10 8 10 8 9 10 11 8 9 10 11
12| 0 8 8 12 8 8 12 12 8 8 8 8 12 12 12 12
13| 0 8 8 12 8 8 12 12 8 9 8 9 12 13 12 13
14| 0 8 8 12 8 10 12 14 8 8 10 10 12 12 14 14
15| 0 8 8 12 8 10 12 14 8 9 10 11 12 13 14 15
PROG
(PARI) T(n, k, op=bitand, w=m->#binary(m)) = { op(n*2^max(0, w(k)-w(n)), k*2^max(0, w(n)-w(k))) }
CROSSREFS
Cf. A344835 (OR), A344836 (XOR), A344837 (min), A344838 (max), A344839 (absolute difference).
Sequence in context: A015818 A225869 A039972 * A344837 A031124 A063695
KEYWORD
nonn,base,tabl
AUTHOR
Rémy Sigrist, May 29 2021
STATUS
approved