login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A344834
Square array T(n, k), n, k >= 0, read by antidiagonals; T(n, k) = (n * 2^max(0, w(k)-w(n))) AND (k * 2^max(0, w(n)-w(k))) (where AND denotes the bitwise AND operator and w = A070939).
6
0, 0, 0, 0, 1, 0, 0, 2, 2, 0, 0, 2, 2, 2, 0, 0, 4, 2, 2, 4, 0, 0, 4, 4, 3, 4, 4, 0, 0, 4, 4, 4, 4, 4, 4, 0, 0, 4, 4, 4, 4, 4, 4, 4, 0, 0, 8, 4, 6, 4, 4, 6, 4, 8, 0, 0, 8, 8, 6, 4, 5, 4, 6, 8, 8, 0, 0, 8, 8, 8, 4, 4, 4, 4, 8, 8, 8, 0, 0, 8, 8, 8, 8, 5, 6, 5, 8, 8, 8, 8, 0
OFFSET
0,8
COMMENTS
In other words, we right pad the binary expansion of the lesser of n and k with zeros (provided it is positive) so that both numbers have the same number of binary digits, and then apply the bitwise AND operator.
FORMULA
T(n, k) = T(k, n).
T(m, T(n, k)) = T(T(m, n), k).
T(n, n) = n.
T(n, 0) = n.
T(n, 1) = A053644(n).
EXAMPLE
Array T(n, k) begins:
n\k| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
---+----------------------------------------------------------
0| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1| 0 1 2 2 4 4 4 4 8 8 8 8 8 8 8 8
2| 0 2 2 2 4 4 4 4 8 8 8 8 8 8 8 8
3| 0 2 2 3 4 4 6 6 8 8 8 8 12 12 12 12
4| 0 4 4 4 4 4 4 4 8 8 8 8 8 8 8 8
5| 0 4 4 4 4 5 4 5 8 8 10 10 8 8 10 10
6| 0 4 4 6 4 4 6 6 8 8 8 8 12 12 12 12
7| 0 4 4 6 4 5 6 7 8 8 10 10 12 12 14 14
8| 0 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
9| 0 8 8 8 8 8 8 8 8 9 8 9 8 9 8 9
10| 0 8 8 8 8 10 8 10 8 8 10 10 8 8 10 10
11| 0 8 8 8 8 10 8 10 8 9 10 11 8 9 10 11
12| 0 8 8 12 8 8 12 12 8 8 8 8 12 12 12 12
13| 0 8 8 12 8 8 12 12 8 9 8 9 12 13 12 13
14| 0 8 8 12 8 10 12 14 8 8 10 10 12 12 14 14
15| 0 8 8 12 8 10 12 14 8 9 10 11 12 13 14 15
PROG
(PARI) T(n, k, op=bitand, w=m->#binary(m)) = { op(n*2^max(0, w(k)-w(n)), k*2^max(0, w(n)-w(k))) }
CROSSREFS
Cf. A344835 (OR), A344836 (XOR), A344837 (min), A344838 (max), A344839 (absolute difference).
Sequence in context: A015818 A225869 A039972 * A344837 A031124 A063695
KEYWORD
nonn,base,tabl
AUTHOR
Rémy Sigrist, May 29 2021
STATUS
approved