login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A373528
Odd numbers k such that k, k+2 and k+4 all have at least two divisors with the same value of the Euler totient function (A000010).
2
4142435, 26196331, 77118741, 89690821, 102974571, 196054673, 201060275, 206568171, 277322153, 280039833, 401784953, 402492695, 415097613, 437290371, 515636303, 526721895, 534746581, 549806211, 575090395, 580329603, 625833871, 629588043, 702183625, 710983971, 716133481
OFFSET
1,1
COMMENTS
Numbers k such that k, k+2 and k+4 are all in A359563.
LINKS
MATHEMATICA
q[n_] := !UnsameQ @@ EulerPhi[Divisors[n]]; seq[kmax_] := Module[{tri = q /@ {1, 3, 5}, s = {}, k = 7}, While[k < kmax, If[And @@ tri, AppendTo[s, k - 6]]; tri = Join[Rest[tri], {q[k]}]; k+=2]; s]; seq[3*10^7]
PROG
(PARI) is(k) = k>1 && k%2 && numdiv(k) > #Set(apply(x->eulerphi(x), divisors(k)));
lista(kmax) = {my(q1 = 0, q2 = 0, q3); forstep(k = 5, kmax, 2, q3 = is(k); if(q1 && q2 && q3, print1(k-4, ", ")); q1 = q2; q2 = q3); }
CROSSREFS
Subsequence of A359563 and A373527.
Sequence in context: A333376 A230755 A204151 * A205245 A366507 A237174
KEYWORD
nonn
AUTHOR
Amiram Eldar, Jun 08 2024
STATUS
approved