login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Combined Diophantine Chebyshev sequences A077245 and A077243.
1

%I #16 Nov 12 2022 16:07:51

%S 1,2,10,17,79,134,622,1055,4897,8306,38554,65393,303535,514838,

%T 2389726,4053311,18814273,31911650,148124458,251239889,1166181391,

%U 1978007462,9181326670,15572819807,72284431969,122604550994,569094129082

%N Combined Diophantine Chebyshev sequences A077245 and A077243.

%C -5*a(n)^2 + 3*b(n)^2 = 7, with the companion sequence b(n)= A077248(n).

%C In addition to the comment above: 3*b(n)^2 = 5*a(n-2)*a(n+2) + 112, where b(n) = (a(n+2) - a(n-2))/6 = A077248(n), n >= 2. - _Klaus Purath_, Aug 12 2021

%H <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0,8,0,-1).

%F a(2*k)= A077245(k) and a(2*k+1)= A077243(k), k>=0.

%F G.f.: (1+x)*(1+x+x^2)/(1-8*x^2+x^4).

%F From _Klaus Purath_, Aug 12 2021: (Start)

%F a(n) = 8*a(n-2) - a(n-4), n >= 4.

%F a(n) = (a(n-2)*a(n-4) - 168)/a(n-6), n >= 6.

%F a(n) = (a(n-1)*a(n-2) - 15/2 - 9/2*(-1)^n)/a(n-3), n >= 3. (End)

%e 5*a(1)^2 + 7 = 5*4 + 7 = 27 = 3*3^2 = 3*A077248(1)^2.

%t LinearRecurrence[{0,8,0,-1},{1,2,10,17},30] (* _Harvey P. Dale_, Nov 12 2022 *)

%Y Cf. A077243, A077245, A077248.

%K nonn,easy

%O 0,2

%A _Wolfdieter Lang_, Nov 08 2002