login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A285230
Number of multisets of exactly n partitions of positive integers into distinct parts with total sum of parts equal to 2n.
2
1, 1, 3, 5, 11, 19, 37, 63, 115, 195, 339, 566, 957, 1573, 2599, 4217, 6842, 10962, 17531, 27767, 43862, 68769, 107469, 166942, 258461, 398124, 611237, 934356, 1423724, 2161145, 3270560, 4932647, 7418099, 11121610, 16629101, 24794130, 36874451, 54698714
OFFSET
0,3
LINKS
FORMULA
G.f.: Product_{j>=1} 1/(1-x^j)^A000009(j+1).
a(n) = A285229(2n,n).
EXAMPLE
a(3) = 5: {4,1,1}, {31,1,1}, {3,2,1}, {21,2,1}, {2,2,2}.
MAPLE
with(numtheory):
g:= proc(n) option remember; `if`(n=0, 1, add(add(
`if`(d::odd, d, 0), d=divisors(j))*g(n-j), j=1..n)/n)
end:
a:= proc(n) option remember; `if`(n=0, 1, add(add(
d*g(d+1), d=divisors(j))*a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..50);
MATHEMATICA
g[n_] := g[n] = If[n == 0, 1, Sum[Sum[If[OddQ[d], d, 0], {d, Divisors[j]}]* g[n - j], {j, 1, n}]/n];
a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d*g[d + 1], {d, Divisors[j]}]*a[n - j], {j, 1, n}]/n];
a /@ Range[0, 50] (* Jean-François Alcover, Dec 11 2020, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A320793 A320794 A320795 * A089098 A129384 A131887
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Apr 14 2017
STATUS
approved