OFFSET
1,3
COMMENTS
LINKS
Colin Barker, Table of n, a(n) for n = 1..1000
A. R. Ashrafi, J. Azarija, K. Fathalikhani, S. Klavzar and M. Petkovsek, Vertex and edge orbits of Fibonacci and Lucas cubes, 2014; See Table 2.
P. Moree, Convoluted convolved Fibonacci numbers, arXiv:math/0311205 [math.CO], 2003.
Index entries for linear recurrences with constant coefficients, signature (2,2,-4,-1,0,0,2,1).
FORMULA
G.f.: (z/2)[1/(1-z-z^2)^2+1/(1-z^2-z^4)].
G.f.: -x*(x-1)^2*(x+1) / ((x^2+x-1)^2*(x^4+x^2-1)). - Colin Barker, Jul 23 2015
MAPLE
with(numtheory): f := z->-1/(1-z-z^2): m := proc(r, j) d := divisors(r): W := (1/r)*z*sum(mobius(d[i])*f(z^d[i])^(r/d[i]), i=1..nops(d)): Wser := simplify(series(W, z=0, 80)): coeff(Wser, z^j) end: seq(m(2, j), j=1..39);
MATHEMATICA
(1-x-x^2+x^3)/((1-x-x^2)^2*(1-x^2-x^4)) + O[x]^40 // CoefficientList[#, x]& (* Jean-François Alcover, Jan 20 2018 *)
PROG
(PARI) Vec(-x*(x-1)^2*(x+1)/((x^2+x-1)^2*(x^4+x^2-1)) + O(x^50)) \\ Colin Barker, Jul 23 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Dec 05 2003
EXTENSIONS
Edited by Emeric Deutsch, Mar 06 2004
STATUS
approved