login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of multisets of exactly n partitions of positive integers into distinct parts with total sum of parts equal to 2n.
2

%I #19 Dec 11 2020 13:39:45

%S 1,1,3,5,11,19,37,63,115,195,339,566,957,1573,2599,4217,6842,10962,

%T 17531,27767,43862,68769,107469,166942,258461,398124,611237,934356,

%U 1423724,2161145,3270560,4932647,7418099,11121610,16629101,24794130,36874451,54698714

%N Number of multisets of exactly n partitions of positive integers into distinct parts with total sum of parts equal to 2n.

%H Alois P. Heinz, <a href="/A285230/b285230.txt">Table of n, a(n) for n = 0..10000</a>

%F G.f.: Product_{j>=1} 1/(1-x^j)^A000009(j+1).

%F a(n) = A285229(2n,n).

%e a(3) = 5: {4,1,1}, {31,1,1}, {3,2,1}, {21,2,1}, {2,2,2}.

%p with(numtheory):

%p g:= proc(n) option remember; `if`(n=0, 1, add(add(

%p `if`(d::odd, d, 0), d=divisors(j))*g(n-j), j=1..n)/n)

%p end:

%p a:= proc(n) option remember; `if`(n=0, 1, add(add(

%p d*g(d+1), d=divisors(j))*a(n-j), j=1..n)/n)

%p end:

%p seq(a(n), n=0..50);

%t g[n_] := g[n] = If[n == 0, 1, Sum[Sum[If[OddQ[d], d, 0], {d, Divisors[j]}]* g[n - j], {j, 1, n}]/n];

%t a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d*g[d + 1], {d, Divisors[j]}]*a[n - j], {j, 1, n}]/n];

%t a /@ Range[0, 50] (* _Jean-François Alcover_, Dec 11 2020, after _Alois P. Heinz_ *)

%Y Cf. A000009, A285229.

%K nonn

%O 0,3

%A _Alois P. Heinz_, Apr 14 2017