Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #48 Feb 17 2022 03:42:27
%S 1,14,63,172,365,666,1099,1688,2457,3430,4631,6084,7813,9842,12195,
%T 14896,17969,21438,25327,29660,34461,39754,45563,51912,58825,66326,
%U 74439,83188,92597,102690,113491,125024,137313,150382,164255,178956
%N Thickened cube numbers: a(n) = n*(n^2 + (n-1)^2) + (n-1)*2*n*(n-1).
%C In other words, positive integers k such that 2*k - 1 is a perfect cube. - _Altug Alkan_, Apr 15 2016
%C a(n) represents the first term in a sum of (2*n - 1)^3 consecutive integers which equals (2*n - 1)^6. - _Patrick J. McNab_, Dec 24 2016
%H Vincenzo Librandi, <a href="/A050492/b050492.txt">Table of n, a(n) for n = 1..10000</a>
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1).
%F a(n) = n*(4*n^2-6*n+3).
%F a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4); a(1)=1, a(2)=14, a(3)=63, a(4)=172. - _Harvey P. Dale_, Oct 02 2011
%F G.f.: x*(1+10*x+13*x^2)/(1-4*x+6*x^2-4*x^3+x^4). - _Colin Barker_, Jan 04 2012
%F a(n) = ((2n-1)^3 + 1)/2. - _Dave Durgin_, May 07 2014
%F E.g.f.: x*(4*x^2 + 6*x + 1)*exp(x). - _G. C. Greubel_, Apr 15 2016
%e * * * * *
%e a(2) = * + * * + * = 14.
%e * * * * *
%t Table[n(n^2+(n-1)^2)+(n-1)2n(n-1),{n,40}] (* or *) LinearRecurrence[ {4,-6,4,-1},{1,14,63,172},40] (* _Harvey P. Dale_, Oct 02 2011 *)
%o (Magma) [n*(4*n^2-6*n+3): n in [1..40]]; // _Vincenzo Librandi_, Oct 03 2011
%o (PARI) a(n)=n*(4*n^2-6*n+3) \\ _Charles R Greathouse IV_, Nov 10 2015
%Y Cf. A001844, A046092, A050533.
%K nonn,easy,nice
%O 1,2
%A Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Dec 27 1999