login
A176973
Second smallest distinct prime factor of repunit(n) = (10^n-1)/9 (A002275), zero if repunit is prime.
3
0, 37, 101, 271, 7, 4649, 73, 37, 41, 513239, 7, 79, 239, 31, 17, 5363222357, 7, 0, 41, 37, 23, 0, 7, 271, 53, 37, 29, 16763, 7, 6943319, 17, 37, 103, 71, 7, 247629013, 909090909090909091, 37, 41, 1231, 7, 1527791, 23, 31, 47
OFFSET
2,2
COMMENTS
111=3*37, 1111=11*101, 11111=41*271, 111111=3*7*11*13*37,..
LINKS
Ray Chandler, Table of n, a(n) for n = 2..382 (from Kamada link)
MATHEMATICA
lst={}; Do[If[Length[FactorInteger[(10^n-1)/9]]==1, lst=Append[lst, 0], lst=Append[lst, FactorInteger[(10^n-1)/9][[2, 1]]]], {n, 2, 60}]; lst
(* Second program: *)
Table[If[Length@ # < 2, 0, #[[2, 1]]] &@ FactorInteger@ FromDigits@ ConstantArray[1, n], {n, 2, 46}] (* Michael De Vlieger, May 10 2017 *)
CROSSREFS
Sequence in context: A044605 A130229 A142941 * A105019 A351141 A090496
KEYWORD
nonn
AUTHOR
EXTENSIONS
Offset corrected to 2, description clarified by Ray Chandler, May 10 2017
b-file truncated at uncertain a(383) at the suggestion of Eric Chen by Max Alekseyev, May 13 2022
STATUS
approved