login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A176691
a(n) = 2^n + 2*n + 1.
12
2, 5, 9, 15, 25, 43, 77, 143, 273, 531, 1045, 2071, 4121, 8219, 16413, 32799, 65569, 131107, 262181, 524327, 1048617, 2097195, 4194349, 8388655, 16777265, 33554483, 67108917, 134217783, 268435513, 536870971, 1073741885, 2147483711, 4294967361, 8589934659, 17179869253
OFFSET
0,1
COMMENTS
The subsequence of primes in this sequence is A163115.
Also the number of connected dominating sets in the (n+1)-wheel graph. - Eric W. Weisstein, Aug 30 2017
LINKS
Eric Weisstein's World of Mathematics, Connected Dominating Set
Eric Weisstein's World of Mathematics, Wheel Graph
FORMULA
a(n) = 2^n + 2*n + 1 = A000079(n) + A005843(n) + 1 = A000051(n) + A005843(n).
From R. J. Mathar, Apr 28 2010: (Start)
a(n) = 4*a(n-1) - 5*a(n-2) + 2*a(n-3).
G.f.: (-2 + 3*x + x^2)/((2*x - 1)*(x - 1)^2). (End)
E.g.f.: exp(x)*(1 + exp(x) + 2*x). - Stefano Spezia, May 06 2023
MAPLE
seq(2^n+2*n+1, n=0..35); # Muniru A Asiru, Mar 25 2018
MATHEMATICA
Table[2^n + 2 n + 1, {n, 0, 60}] (* Vladimir Joseph Stephan Orlovsky, Feb 15 2011 *)
LinearRecurrence[{4, -5, 2}, {2, 5, 9}, 40] (* Vincenzo Librandi, Aug 12 2015 *)
CoefficientList[Series[(-2 + 3 x + x^2)/((-1 + x)^2 (-1 + 2 x)), {x, 0, 20}], x] (* Eric W. Weisstein, Aug 30 2017 *)
PROG
(PARI) vector(40, n, n--; 2^n + 2*n + 1) \\ Michel Marcus, Aug 12 2015
(Magma) [2^n + 2*n + 1: n in [0..40]]; // Vincenzo Librandi, Aug 12 2015
(GAP) List([0..35], n->2^n+2*n+1); # Muniru A Asiru, Mar 25 2018
KEYWORD
nonn,easy
AUTHOR
Jonathan Vos Post, Apr 23 2010
EXTENSIONS
Corrected (one 1048617 replaced by 2097195) by R. J. Mathar, Apr 28 2010
STATUS
approved