login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 2^n + 2*n + 1.
12

%I #46 May 07 2023 05:39:44

%S 2,5,9,15,25,43,77,143,273,531,1045,2071,4121,8219,16413,32799,65569,

%T 131107,262181,524327,1048617,2097195,4194349,8388655,16777265,

%U 33554483,67108917,134217783,268435513,536870971,1073741885,2147483711,4294967361,8589934659,17179869253

%N a(n) = 2^n + 2*n + 1.

%C The subsequence of primes in this sequence is A163115.

%C Also the number of connected dominating sets in the (n+1)-wheel graph. - _Eric W. Weisstein_, Aug 30 2017

%H Seiichi Manyama, <a href="/A176691/b176691.txt">Table of n, a(n) for n = 0..3000</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ConnectedDominatingSet.html">Connected Dominating Set</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/WheelGraph.html">Wheel Graph</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (4,-5,2).

%F a(n) = 2^n + 2*n + 1 = A000079(n) + A005843(n) + 1 = A000051(n) + A005843(n).

%F From _R. J. Mathar_, Apr 28 2010: (Start)

%F a(n) = 4*a(n-1) - 5*a(n-2) + 2*a(n-3).

%F G.f.: (-2 + 3*x + x^2)/((2*x - 1)*(x - 1)^2). (End)

%F E.g.f.: exp(x)*(1 + exp(x) + 2*x). - _Stefano Spezia_, May 06 2023

%p seq(2^n+2*n+1,n=0..35); # _Muniru A Asiru_, Mar 25 2018

%t Table[2^n + 2 n + 1, {n, 0, 60}] (* _Vladimir Joseph Stephan Orlovsky_, Feb 15 2011 *)

%t LinearRecurrence[{4, -5, 2}, {2, 5, 9}, 40] (* _Vincenzo Librandi_, Aug 12 2015 *)

%t CoefficientList[Series[(-2 + 3 x + x^2)/((-1 + x)^2 (-1 + 2 x)), {x, 0, 20}], x] (* _Eric W. Weisstein_, Aug 30 2017 *)

%o (PARI) vector(40, n, n--; 2^n + 2*n + 1) \\ _Michel Marcus_, Aug 12 2015

%o (Magma) [2^n + 2*n + 1: n in [0..40]]; // _Vincenzo Librandi_, Aug 12 2015

%o (GAP) List([0..35],n->2^n+2*n+1); # _Muniru A Asiru_, Mar 25 2018

%Y Cf. A000051, A000079, A000290, A005126, A005843, A163115, A194455.

%K nonn,easy

%O 0,1

%A _Jonathan Vos Post_, Apr 23 2010

%E Corrected (one 1048617 replaced by 2097195) by _R. J. Mathar_, Apr 28 2010