login
A047917
Triangular array read by rows: a(n,k) = phi(n/k)*(n/k)^k*k!/n if k|n else 0 (1<=k<=n).
1
1, 1, 1, 2, 0, 2, 2, 2, 0, 6, 4, 0, 0, 0, 24, 2, 6, 8, 0, 0, 120, 6, 0, 0, 0, 0, 0, 720, 4, 8, 0, 48, 0, 0, 0, 5040, 6, 0, 36, 0, 0, 0, 0, 0, 40320, 4, 20, 0, 0, 384, 0, 0, 0, 0, 362880, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3628800, 4, 12, 64, 324, 0, 3840, 0, 0, 0, 0
OFFSET
1,4
REFERENCES
J. E. A. Steggall, On the numbers of patterns which can be derived from certain elements, Mess. Math., 37 (1907), 56-61.
LINKS
C. L. Mallows and N. J. A. Sloane, Notes on A002618, A002619, etc.
J. E. A. Steggall, On the numbers of patterns which can be derived from certain elements, Mess. Math., 37 (1907), 56-61.
J. E. A. Steggall, On the numbers of patterns which can be derived from certain elements, Mess. Math., 37 (1907), 56-61. [Annotated scanned copy. Note that the scanned pages are out of order]
EXAMPLE
1; 1,1; 2,0,2; 2,2,0,6; 4,0,0,0,24; 2,6,8,0,0,120; ...
MATHEMATICA
a[n_, k_] := If[ Divisible[n, k], EulerPhi[n/k]*(n/k)^k*k!/n, 0]; Flatten[ Table[ a[n, k], {n, 1, 12}, {k, 1, n}]](* Jean-François Alcover, Feb 17 2012 *)
PROG
(Haskell)
a047917 n k = a047917_tabl !! (n-1) !! (k-1)
a047917_row n = a047917_tabl !! (n-1)
a047917_tabl = zipWith (zipWith div) a047916_tabl a002024_tabl
-- Reinhard Zumkeller, Mar 19 2014
CROSSREFS
Divide n-th row of A047916 by n.
Row sums give A061417.
Cf. A002024.
Sequence in context: A329321 A334239 A335062 * A144569 A000360 A023556
KEYWORD
nonn,tabl,nice,easy
EXTENSIONS
Offset corrected by Reinhard Zumkeller, Mar 19 2014
STATUS
approved