login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A047917 Triangular array read by rows: a(n,k) = phi(n/k)*(n/k)^k*k!/n if k|n else 0 (1<=k<=n). 1
1, 1, 1, 2, 0, 2, 2, 2, 0, 6, 4, 0, 0, 0, 24, 2, 6, 8, 0, 0, 120, 6, 0, 0, 0, 0, 0, 720, 4, 8, 0, 48, 0, 0, 0, 5040, 6, 0, 36, 0, 0, 0, 0, 0, 40320, 4, 20, 0, 0, 384, 0, 0, 0, 0, 362880, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3628800, 4, 12, 64, 324, 0, 3840, 0, 0, 0, 0 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,4

REFERENCES

J. E. A. Steggall, On the numbers of patterns which can be derived from certain elements, Mess. Math., 37 (1907), 56-61.

LINKS

Reinhard Zumkeller, Rows n = 1..125 of triangle, flattened

C. L. Mallows and N. J. A. Sloane, Notes on A002618, A002619, etc.

N. J. A. Sloane, Notes on A002618, A002619, etc.

J. E. A. Steggall, On the numbers of patterns which can be derived from certain elements, Mess. Math., 37 (1907), 56-61.

J. E. A. Steggall, On the numbers of patterns which can be derived from certain elements, Mess. Math., 37 (1907), 56-61. [Annotated scanned copy. Note that the scanned pages are out of order]

EXAMPLE

1; 1,1; 2,0,2; 2,2,0,6; 4,0,0,0,24; 2,6,8,0,0,120; ...

MATHEMATICA

a[n_, k_] := If[ Divisible[n, k], EulerPhi[n/k]*(n/k)^k*k!/n, 0]; Flatten[ Table[ a[n, k], {n, 1, 12}, {k, 1, n}]](* Jean-Fran├žois Alcover, Feb 17 2012 *)

PROG

(Haskell)

a047917 n k = a047917_tabl !! (n-1) !! (k-1)

a047917_row n = a047917_tabl !! (n-1)

a047917_tabl = zipWith (zipWith div) a047916_tabl a002024_tabl

-- Reinhard Zumkeller, Mar 19 2014

CROSSREFS

Divide n-th row of A047916 by n.

Row sums give A061417.

Cf. A002024.

Sequence in context: A102395 A127504 A321665 * A144569 A000360 A023556

Adjacent sequences:  A047914 A047915 A047916 * A047918 A047919 A047920

KEYWORD

nonn,tabl,nice,easy

AUTHOR

N. J. A. Sloane

EXTENSIONS

Offset corrected by Reinhard Zumkeller, Mar 19 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 22 11:50 EST 2020. Contains 332135 sequences. (Running on oeis4.)