login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A047919 Triangular array read by rows: a(n,k) = Sum_{d|k} mu(d)*U(n,k/d)/n if k|n else 0, where U(n,k) = A047916(n,k) (1<=k<=n). 2
1, 1, 0, 2, 0, 0, 2, 0, 0, 4, 4, 0, 0, 0, 20, 2, 4, 6, 0, 0, 108, 6, 0, 0, 0, 0, 0, 714, 4, 4, 0, 40, 0, 0, 0, 4992, 6, 0, 30, 0, 0, 0, 0, 0, 40284, 4, 16, 0, 0, 380, 0, 0, 0, 0, 362480, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3628790, 4, 8, 60, 312, 0, 3768, 0, 0, 0, 0 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,4

REFERENCES

J. E. A. Steggall, On the numbers of patterns which can be derived from certain elements, Mess. Math., 37 (1907), 56-61.

LINKS

Reinhard Zumkeller, Rows n = 1..125 of triangle, flattened

C. L. Mallows and N. J. A. Sloane, Notes on A002618, A002619, etc.

N. J. A. Sloane, Notes on A002618, A002619, etc.

J. E. A. Steggall, On the numbers of patterns which can be derived from certain elements, Mess. Math., 37 (1907), 56-61.

J. E. A. Steggall, On the numbers of patterns which can be derived from certain elements, Mess. Math., 37 (1907), 56-61. [Annotated scanned copy. Note that the scanned pages are out of order]

MATHEMATICA

U[n_, k_] := If[Divisible[n, k], EulerPhi[n/k]*(n/k)^k*k!, 0]; a[n_, k_] := Sum[If[Divisible[n, k], MoebiusMu[d]*U[n, k/d], 0], {d, Divisors[k]}]; row[n_] := Table[a[n, k], {k, 1, n}]/n; Table[row[n], {n, 1, 12}] // Flatten (* Jean-Fran├žois Alcover, Nov 21 2012, after A047918 *)

PROG

(Haskell)

a047919 n k = a047919_tabl !! (n-1) !! (k-1)

a047919_row n = a047919_tabl !! (n-1)

a047919_tabl = zipWith (zipWith div) a047918_tabl a002024_tabl

-- Reinhard Zumkeller, Mar 19 2014

CROSSREFS

Divide n-th row of array A047918 by n.

Cf. A002024.

Sequence in context: A138805 A316400 A061897 * A272624 A271223 A260944

Adjacent sequences:  A047916 A047917 A047918 * A047920 A047921 A047922

KEYWORD

nonn,tabl,nice,easy

AUTHOR

N. J. A. Sloane

EXTENSIONS

Offset corrected by Reinhard Zumkeller, Mar 19 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 17 23:35 EST 2020. Contains 332006 sequences. (Running on oeis4.)