login
A047919
Triangular array read by rows: a(n,k) = Sum_{d|k} mu(d)*U(n,k/d)/n if k|n else 0, where U(n,k) = A047916(n,k) (1<=k<=n).
2
1, 1, 0, 2, 0, 0, 2, 0, 0, 4, 4, 0, 0, 0, 20, 2, 4, 6, 0, 0, 108, 6, 0, 0, 0, 0, 0, 714, 4, 4, 0, 40, 0, 0, 0, 4992, 6, 0, 30, 0, 0, 0, 0, 0, 40284, 4, 16, 0, 0, 380, 0, 0, 0, 0, 362480, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3628790, 4, 8, 60, 312, 0, 3768, 0, 0, 0, 0
OFFSET
1,4
REFERENCES
J. E. A. Steggall, On the numbers of patterns which can be derived from certain elements, Mess. Math., 37 (1907), 56-61.
LINKS
C. L. Mallows and N. J. A. Sloane, Notes on A002618, A002619, etc.
J. E. A. Steggall, On the numbers of patterns which can be derived from certain elements, Mess. Math., 37 (1907), 56-61.
J. E. A. Steggall, On the numbers of patterns which can be derived from certain elements, Mess. Math., 37 (1907), 56-61. [Annotated scanned copy. Note that the scanned pages are out of order]
MATHEMATICA
U[n_, k_] := If[Divisible[n, k], EulerPhi[n/k]*(n/k)^k*k!, 0]; a[n_, k_] := Sum[If[Divisible[n, k], MoebiusMu[d]*U[n, k/d], 0], {d, Divisors[k]}]; row[n_] := Table[a[n, k], {k, 1, n}]/n; Table[row[n], {n, 1, 12}] // Flatten (* Jean-François Alcover, Nov 21 2012, after A047918 *)
PROG
(Haskell)
a047919 n k = a047919_tabl !! (n-1) !! (k-1)
a047919_row n = a047919_tabl !! (n-1)
a047919_tabl = zipWith (zipWith div) a047918_tabl a002024_tabl
-- Reinhard Zumkeller, Mar 19 2014
CROSSREFS
Divide n-th row of array A047918 by n.
Cf. A002024.
Sequence in context: A316400 A061897 A372568 * A272624 A271223 A260944
KEYWORD
nonn,tabl,nice,easy
EXTENSIONS
Offset corrected by Reinhard Zumkeller, Mar 19 2014
STATUS
approved