login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A271223
Digits of one of the two 3-adic integers sqrt(-2).
12
1, 1, 2, 0, 0, 2, 0, 1, 0, 0, 0, 2, 1, 2, 0, 1, 0, 1, 1, 0, 2, 2, 0, 1, 1, 1, 2, 2, 2, 0, 0, 0, 2, 1, 0, 1, 2, 0, 2, 2, 0, 2, 0, 1, 2, 0, 1, 2, 2, 2, 1, 0, 2, 0, 1, 2, 0, 2, 0, 0, 1, 1, 2, 1, 0, 1, 2, 1, 1, 2, 0
OFFSET
0,3
COMMENTS
This is the scaled first difference sequence of A268924. See the formula.
The digits of the other 3-adic integer sqrt(-2), are given in A271224. See also A268924 for the two 3-adic numbers sqrt(-2), called there u and -u.
a(n) is the unique solution of the linear congruence 2*A268924(n)*a(n) + A271225(n) == 0 (mod 3), n>=1. Therefore only the values 0, 1, and 2 appear. See the Nagell reference given in A268922, eq. (6) on p. 86, adapted to this case. a(0) = 1 follows from the formula given below.
For details see the Wolfdieter Lang link under A268992.
The first k digits in the base 3 representation of Lucas(3^n) give the first k terms of the sequence. For example, the base 3 representation of Lucas(3^5) = 84722519070079276 begins 1 + 1*3 + 2*(3^2) + 0*(3^3) + 0*(3^4) + ... so the sequence begins [1, 1, 2, 0, 0, ...]. - Peter Bala, Nov 15 2022
REFERENCES
Trygve Nagell, Introduction to Number Theory, Chelsea Publishing Company, New York, 1964, pp. 86 and 77-78.
FORMULA
a(n) = (b(n+1) - b(n))/3^n, n >= 0, with b(n) = A268924(n), n >= 0.
a(n) = - A271225(n)*2*A268924(n) (mod 3), n >= 1. Solution of the linear congruence given above in a comment. See, e.g., Nagell, Theorem 38 pp. 77-78.
A268924(n+1) = sum(a(k)*3^k, k=0..n), n >= 0.
EXAMPLE
a(4) = 0 because 2*22*3 + 6 = 138 == 0 (mod 3).
a(4) = - 6*(2*22) (mod 3) = -0*(2*1) (mod 3) = 0.
A268924(5) = 22 = 1*3^0 + 1*3^1 + 2*3^2 + 0*3^3 + 0*3^4.
MAPLE
# uses properties of the numbers Lucas(3^n) = A006267(n)
a := proc(n) option remember; if n = 1 then 1 else irem(a(n-1)^3 + 3*a(n-1), 3^n) end if; end proc:
convert(a(70), base, 3); # Peter Bala, Nov 15 2022
PROG
(PARI) a(n) = truncate(sqrt(-2+O(3^(n+1))))\3^n; \\ Michel Marcus, Apr 09 2016
CROSSREFS
KEYWORD
nonn,base,easy
AUTHOR
Wolfdieter Lang, Apr 05 2016
STATUS
approved