login
A047921
Triangle of numbers a(n,k) = number of permutations on n letters containing k 3-sequences (n >= 0, 0<=k<=max(0,n-2)).
4
1, 1, 2, 5, 1, 21, 2, 1, 106, 11, 2, 1, 643, 62, 12, 2, 1, 4547, 406, 71, 13, 2, 1, 36696, 3046, 481, 80, 14, 2, 1, 332769, 25737, 3708, 559, 89, 15, 2, 1, 3349507, 242094, 32028, 4414, 640, 98, 16, 2, 1, 37054436, 2510733, 306723, 38893, 5164, 724, 107, 17, 2, 1
OFFSET
0,3
LINKS
J. Riordan, Permutations without 3-sequences, Bull. Amer. Math. Soc., 51 (1945), 745-748.
FORMULA
Riordan gives a recurrence.
EXAMPLE
Triangle begins:
1;
1;
2;
5, 1;
21, 2, 1;
106, 11, 2, 1;
643, 62, 12, 2, 1;
4547, 406, 71, 13, 2, 1;
36696, 3046, 481, 80, 14, 2, 1;
332769, 25737, 3708, 559, 89, 15, 2, 1;
...
CROSSREFS
Columns give A002628, A002629, A002630.
Row sums give A000142.
Sequence in context: A120294 A186766 A343535 * A242783 A177250 A102786
KEYWORD
nonn,tabf,nice,easy
EXTENSIONS
Edited and extended by Max Alekseyev, Sep 05 2010
a(0,0) = a(1,0) = 1 prepended by Alois P. Heinz, Apr 20 2021
STATUS
approved